发布时间:2020-06-22 11:53 原文链接: 支气管哮喘小鼠气道反应性无创检测方法的建立(一)

李斌恺   赖克方   洪燕华   王法霞   陈如冲   林少建   钟南山

【摘要】   目的   目前国内对支气管哮喘 (简称哮喘) 小鼠的评价多数仅立足于气道炎性指标 ,不能完全反映哮喘的病理生理特征 。 本所率先从国外引进了小动物无创检测和有创检测肺功能仪 。 无创法检测时小鼠不必麻醉 ,而且每次可以同时检测多只小鼠 ,具有较大的优越性 ,但能否取代有创法尚需更多的数据 。本研究旨在建立无创检测小鼠气道高反应性的检测方法 ,并与有创检测方法进行比较 。 方法   根据动物模型和气道反应性检测方法不同 ,动物分为 : ① 无创哮喘组 ; ② 无创对照组 ; ③ 有创哮喘组 ; ④ 有创对照组 。 采用卵白蛋白致敏和激发 ,建立 BALB/ c 小鼠哮喘模型 ,生理盐水作为对照 ,分别用无创和有创的方法测定气道反应性 。 哮喘动物雾化吸入0 . 2~50 g/ L 倍增浓度的乙酰甲胆碱 ( Mch) ,测定相应浓度下的增强呼气间歇 ( Pe nh) 值或气道阻力 ( RL ) 值等指标 。 将小鼠吸入 Mc h 后 RL 或 Penh 增加 2 倍的激发浓度以 PC100 来表示 。 所有动物都行支气管肺泡灌洗 , 收集灌洗液 , 涂片染色后分类计数 。结果   无创哮喘组 PC100 均 ≤6 . 25 g/ L ,对照组 PC100 均 ≥ 12 . 5 g/ L 。 其 Lo g2 ( 10 PC100 ) 值 ( 5 . 36 ± 0 . 84) 显著低于对照组 ( 7 . 97 ± 0 . 82)( P < 0 . 01) 。 无创哮喘组从 Mc h 浓度3 . 12 g/ L 开始 , 其 Pe nh 值明显高于对照组 。有创哮喘组 RL 值从Mc h 浓度0 . 39 g/ L开始就明显高于相应对照组 ( P < 0 . 05) 。 无创组与有创组的气道反应性相关系数 R =0 . 96 ( P < 0 . 01) 。 无创哮喘组和有创哮喘组的嗜酸粒细胞分别为 ( 54 . 00 ± 5 . 96) % , ( 55 . 93 ± 5 . 92) % ,显著高于各自对照组的 ( 0 . 38 ± 0 . 52) % , ( 0 . 63 ± 0 . 74) %( P < 0 . 01) 。 结论   本研究表明以 Penh 为主要测定指标的无创方法 ,可以成功检测哮喘小鼠气道高反应性 。

【关键词】   小鼠 ;气道反应性 ; 支气管哮喘 ;增强呼气间歇 ; 无创检测

【Ab st ra ct】   Objective  Most of t he evaluation on asthmatic  mouse  model only based on the airway inflammation , not fully reflecting its  pathophysiology. Noninvasive method of measuring bronchial hyper  responsiveness can detect several conscious mice in one time , but  whether it can replace the invasive technique needs more data to be  identified. This study aims to establish a non-invasive detection of  mouse airway hyper responsiveness ,comparing with the invasive method.  Methods    According to different ways of detection , mice were divided into four  groups : non-invasive asthma group , non-invasive control group  ,invasive asthma group and invasive control group . Mouse was sensitized  and challenged with ovalbumin ( OVA) for asthmatic model . The mice  were challenged with increasing concentrations of methacholine aero sol  from 0 . 2 250 g/  L ,and the airway resistance was measured. Enhance pause ( Penh) or  airway resistance ( RL ) was taken for each group . The dose of  methacholine causing 100 % increase of respiratory resistance was  defined as PC100 . The PC100 values were converted into Log2 ( 10 PC100 )  for statistical analysis. Bro nchoalveolar lavage cytology was  performed to evaluate the airway inflammation. Results  The PC100 of non-invasive asthma group was ≤6 . 25 g/ L , and the non-invasive control group’s ≥12 . 5 g/  L . I t s Lo g2 ( 10 PC100 ) value was significantly less than that of  control group , ( 5 . 36 ± 0 . 84) vs ( 7 . 97 ± 0 . 82) ( P < 0 .  01) . The Penh value of non -invasive asthma group began significantly  increasing when the concentration of Mch was 3 . 12 g/ L . The RL value of invasive asthma group was increasing at the beginning of 0 . 39 g/  L ( P < 0 . 05) . The coefficient rate of two groups was 0 . 96 ( P  < 0 . 01 ) . The EOS ( %) of non-invasive asthma group or invasive  asthma group was 54 . 00 ± 5 . 96 , 55 . 93 ± 5 . 92 respectively ,  significantly larger than that of control group ( 0 . 38 ±0 . 52 ,0 . 63 ± 0 . 74 , P < 0 . 01) . Conclusions  This  study shows that single-chambered barometric whole-body plethysmography  as a non- invasive lung function test can success fully detect airway  responsiveness in asthmatic mouse model .