发布时间:2020-10-12 16:18 原文链接: 实验室pH测量原理与应用(一)

1、pH测量入门

1.1 酸性或碱性

为什么我们把醋列为酸类?原因是醋中含有过量的水合氢离子(H3O+),溶液中过量的水合氢离子,会使溶液呈酸性。相反含有过量氢氧根离子(OH)的溶液,则呈碱性。在纯水体系中水合氢离子和氢氧根离子相互中和。我们称这种溶液的pH 值为中性。

H3O+ + OH ↔ 2 H2O

图1. 酸与碱形成水的反应

凡是能释放出氢离子或质子的物质叫酸,此溶液即为酸性。盐酸、硫酸、醋酸或醋是一些众所周知的酸。以下是醋酸的分解式:

CH3COOH + H2O ↔ CH3COO + H3O+

图2. 醋酸的分解式

不是每一种酸的酸性都一样强。溶液的确切酸度,是由溶液中氢离子总数所决定的。pH值被定义为溶液中氢离子浓度的负对数(准确地说,pH是由溶液中氢离子的活度所决定)。

pH = –log [H3O+]

图3. pH值计算公式

通过pH值测量,物质的酸碱度可以进行量化。图4列出了一些日常用品和化学制品的pH值。


图4. 日常用品和化学品的pH 值

pH 7至14属于碱性范围,在此范围中氢氧根离子(OH-)过量。这种溶液的pH值是由溶于水溶液的碱基所造成的,碱基分解释放出的氢氧根离子使溶液呈碱性。氢氧化钠、氨水和碳酸盐是众所周知的碱。

NH3 + H2O ↔ NH4+ + OH

图5. 氨和水的反应式

水溶液的pH范围包括酸性范围和碱性范围,数值从0至14。pH 0至7称为酸性, pH7至14称为碱性,pH为7时,则称为中性。

1.2 为什么需要测量pH

测量pH主要有以下几个原因:

• 制造性质稳定的产品 – 生产过程中,为了确保得到所期望的产品,调控pH值至关重要。pH值能明显的改变最终产品的性状与口味。

• 减少生产成本 – 这和上述的原因相关。如果在特定的pH,产量能达到最高,当然生产的成本自然就节约了。

• 减少对人类、资产和环境的危害 – 有些产物在特定的pH会产生危害性。为了保护人类与资产的安全,我们对排放到环境中的有害物质应严格控制。判断物质是否有危害性,第一步就是测量它的pH 值。

• 实现管理法规的要求 – 如上所述,一些产物具有危害性。政府机构为保护人民免受危险物质的伤害,制订相应的管理法规。

• 保护设备、设施 – 生产线上一些生产设备直接和反应物接触,如果不适当地控制pH值,就会造成设备腐蚀。因此为了避免腐蚀造成的生产线寿命减短,我们应该对pH 进行监控。

• 进行研发 – 在研发过程中,比如研究生物化学工艺,pH值是一个非常重要的参考参数,往往会影响最后研究的成果。

以上这些例子介绍了各种应用中pH 的重要性,解释了pH为什么需要测量。

1.3 pH测量工具

测量pH必须使用对氢离子敏感的指示电极。测量的原理是使用一个对氢离子感应的玻璃膜电极,检测电极与样品溶液间产生的信号。然而,单单有pH电极的指示电位是不够的,我们还需要第二电极。第二电极可以为指示电极提供稳定的参比信号或电位。

测量pH值必须一起使用这两种不同电位的电极。pH电极根据氢离子浓度而产生电信号,电信号的大小决定了溶液的酸碱度。

参比电极则对氢离子浓度无响应,因此可以为pH指示电极提供相同、稳定的电位。两电极间的电位可决定溶液的pH值,即溶液中氢离子的数量。电位与溶液中氢离子浓度呈线性函数关系,函数公式见图6:

E = E0 + 2.3RT / nF × log [H3O+]

E = 测量电位

E0 = 常数

R = 气体常数

T = 开氏温度

n = 离子价数

F = 法拉第常数

图6. 溶液中氢离子浓度与pH电极的输出电位的关系。

图7. pH电极和参比电极测量

图7中 pH测量由两个独立的电极组成,如图中的pH指示电极和参比电极。如今两个独立的电极合并为一支复合电极已经十分普遍。

这三种电极各有特点和其应用领域。

a) pH电极

pH电极是直接响应溶液中pH的部分。它由玻璃杆和底端的玻璃氢离子敏感膜组成。敏感膜与水性溶液接触时,其外部会形成一层凝胶层。同时由于电极内部充满水性电解质溶液,膜内部也有一层凝胶。凝胶层的实例请见下图:

图8. 玻璃膜界面图

凝胶层内和周围的氢离子根据测试溶液中氢离子的浓度即pH不同,会发生渗出或渗入凝胶层。如果溶液是碱性的,H+会向外渗出,膜外就形成了负电荷。由于玻璃电极内部的电解液拥有恒定的pH值,测量过程中膜内部表面的电位保持恒定。如此造成了pH电极的内部和外部的电荷不同。标准pH电极示意图如图9所示。

图9. 标准pH电极的结构图


相关文章

现代化智能分析实验室研发合作单位比选评审结果

2024年5月7日,中国环境监测总站(以下简称总站)组织召开了“现代化智能分析实验室研发合作单位比选会”,根据专家评审结果,确定睿科集团(厦门)股份有限公司作为总站现代化智能分析实验室研发合作单位,现......

袁志明研究员获颁全国五一劳动奖章

4月28日,中华全国总工会召开大会,隆重表彰2024年全国五一劳动奖和全国工人先锋号获得者,中国科学院武汉病毒研究所袁志明研究员荣获全国五一劳动奖章。袁志明现任武汉国家生物安全实验室主任,中国科学院武......

教育部印发《高等学校实验室安全分级分类管理办法(试行)》

为加强高校实验室安全精细化管理,提高高校实验室安全风险防范的针对性和有效性,教育部近期印发《高等学校实验室安全分级分类管理办法(试行)》,对高校实验室安全分级分类管理的责任体系、工作原则、管理要求等作......

甘肃青稞功能成分研究与创新利用实验室揭牌成立

4月29日,甘肃青稞功能成分研究与创新利用实验室揭牌仪式在甘肃奇正实业集团有限公司举行。这是由省农业工程技术研究院与甘肃奇正实业集团有限公司共同搭建的院企深度融合创新平台,双方在前期良好合作的基础上充......

制药合规指南——如何实现并确保制药合规

如何实现并确保制药合规新版制药合规指南讨论了帮助制药实验室实现合规的策略和解决方案。对于法规和生命周期管理的深入理解和有效方法对制药厂商必不可少。我们的“无缝实验室合规”指南展示了制药实验室如何能从我......

安捷伦携手北京工商大学共创新篇:国酒风味研究联合实验室正式成立

4月10日,安捷伦科技公司与北京工商大学共同举办“国酒风味研究联合实验室”的成立揭牌仪式。中国工程院院士、北京工商大学国酒研究院院长孙宝国教授,安捷伦副总裁兼大中华区业务总经理杨挺等双方领导嘉宾齐聚一......

创新如潮:Analytica2024展示尖端实验室技术

关注未来实验室的数字化和可持续发展德国化学家协会(GDCH)德国生物化学及分子生物学协会(GBM)德国医用化学协会(DGKCH)主办的analytica2024在4月9日至12日于慕尼黑举办,全球各个......

关于举办第五届中国实验室发展大会的第一轮通知

关于举办第五届中国实验室发展大会的通知(第一轮)各有关单位:为推进我国实验室技术的发展,提升实验室综合水平,促进国内外行业间的相互交流与合作,中国仪器仪表行业协会、世信国际会展集团研究决定于2024年......

淡水河谷中南大学低碳与氢冶金联合实验室启用

4月8日,由淡水河谷公司与中南大学合作共建的淡水河谷-中南大学低碳与氢冶金联合实验室正式启用。该实验室是2021年11月和2022年5月中国-巴西高层协调与合作委员会第五、六次会议的重要成果之一,也是......

最高50万,一全国重点实验室开放课题申报指南

为促进我国内燃机与动力系统领域前沿技术研究,加强学术交流与合作,2024年内燃机与动力系统全国重点实验室(以下简称“实验室”)特设立开放基金资助相关课题研究,申请者须根据实验室拟资助的领域和方向进行申......