发布时间:2020-10-16 17:08 原文链接: 差式扫描量热法(DSC)在食品研究中的应用

  一、DSC的基本原理

  1、定义

  程序控温条件下,直接测试样品在升温、降温或恒温过程中所吸收或释放的能量。

  2、分类

  根据测量方法不同,分为功率补偿型和热流型两种。

  热流型(HeatFlux):在给予样品和参比品相同的功率下,测定样品和参比品两端温差DT,然后根据热流方程,将DT(温差)换算成DQ(热量差)作为信号的输出。

   功率补偿型(PowerCompensation):在样品和参比品始终保持相同温度的条件下,测定为满足此条件样品和参比品两端所需的能量差,并直接作为信号DQ(热量差)输出。

  3、DSC的优点

  1、克服 DTA分析中,试样本身的热效率对升温的影响

  2、能定量测定多种热力学和动力学参数

  3、可进行晶体微细结构分析等工作

  4、可进行定量分析 分辨率高、灵敏度高

  二、DSC在食品研究中的应用

  食品加工过程中,热是最普遍的加工参数,不论是食品的热杀菌、烹调、干燥还是冷冻保藏都会涉及到热加工过程。

  当食品与热之间相互作用,食品会发生一系列的变化,如相变(水和冰)、蛋白质构象发生变化(有序到无序)、质量或组成的变化、流变性质的变化等等。大多数物质随温度的变化,热容、结构等将发生变化,这个过程同时伴随着能量的改变,因此可用热分析技术对其进行研究。

  1、蛋白质

  在加热过程中,蛋白质分子的展开需要吸收能量(如氢键的断裂等),这部分热称为变性热。蛋白质变性一般表现为分子结构从有序到无序、从折叠到展开,这些结构的变化伴随能量的变化,可用DSC进行测量。

  应用举例:蛋白质热变性和组分分析

  肌肉是一个复杂的体系,主要有三类蛋白质组成,分别为肌球蛋白、肌浆蛋白、肌动蛋白。

  下图是有关大白兔肌肉受热变性的DSC热分析。Ⅰ 、Ⅱ、Ⅲ三个变性峰分别代表肌球蛋白、肌浆蛋白、肌动蛋白在不同温度下的热变性。可清楚地看到,肌球蛋白对热最不稳定,在60℃左右就发生变性,而肌动蛋白对热相对较稳定。

  PS:DSC并不能研究所有的蛋白质。就酪蛋白而言,其分子结构是展开的,因此加热时,并不存在分子展开的问题,在DSC给出的热分析图上将没有变性峰的出现。此外,DSC热分析技术也可用于分析检验,如婴幼儿奶粉中β-乳球蛋白的检测。DSC热分析技术还可用于研究蛋白质-蛋白质、蛋白质-水、蛋白质-糖、蛋白质的热变性动力学等等问题。

  2、水分含量的测定

  食品中的水用水分活度来表示时,可分为可冻结水(在0℃能结冰,也称为自由水)和非冻结水(一般在-80℃不能结冰,也称为结合水)。

  DSC热分析技术可用来测定食品体系中的自由水。总水分含量可根据AOAC标准方法在103~105℃进行恒重来测定,即可得结合水含量,结合水含量=总水分含量-自由水含量。

  3、淀粉

  淀粉糊化过程代表了淀粉分子从有序状态到无序状态的转变,同时也伴随着能量的变化,因此可以利用DSC对淀粉的糊化特性、糊化程度及淀粉颗粒晶体结构相转移温度等进行测定。

  举例:完全糊化的淀粉样品在DSC分析过程中应为没有吸收峰的平坦直线。Mechteldis等人提出:根据淀粉DSC分析过程中吸热峰面积(即热焓ΔH)的大小可估测淀粉糊化度的大小。

  由焓变ΔH和糊化度的关系曲线知,两者成正相关,因此只要找出它们的相关系数,便可用DSC测定淀粉的糊化度。

  4、油脂

  油脂在加热及冷却过程中表现出大量的由加热而引起的相转变,因此可用DSC对油脂进行研究。DSC关于脂类的研究分为两类,一类是生物膜;另一类是动物脂肪和植物油。一般可以使用DSC热分析技术来研究脂类物质的熔点和结晶动力学。

  5、玻璃态转变温度的测定

  食品的玻璃态保藏是食品保藏最理想的条件,在此条件下,食品不会产生褐变、蛤败等,所形成的冰晶由于非常细小,不会挤破细胞,细胞中的汁液不会流失。

  DSC热分析技术可用于测定物质的玻璃态转变温度,在食品系统中被广泛应用。如在冰淇淋的玻璃化保存、肌肉组织的玻璃化、根据水分含量与完全玻璃化的关系测定蜂蜜的水分含量等研究中,DSC都发挥了很大作用。

  举例:Kim等研究水分含量和韩国蜂蜜物理性质的关系,发现10种韩国蜂蜜水分含量和Tg之间有线性关系。李等人研究了椴树蜜水分含量与Tg的关系,如右图示。拟合出线性方程:Tg= -11.59x - 57.42 ( P < 0.01,x 为样品中掺入水的质量分数,0%~30% ) ,由此,可快速检验蜂蜜中的含水量。

  三、限制与发展

  由于DSC分析方法只能显示反应发生时的温度以及伴随的焓变,并不能表明反应的确切性质,因此在通常研究中需要和其他方法进行比较。此外,DSC法应用范围的增宽以及原材料数目增大,使样品和DSC过程标准化、实验所测数据的分析和讨论工作都更具有挑战性。

  在近年的研究中,DSC并没有因为核磁共振NMR等新方法的发现而停止发展。相反,DSC方法有了长足的发展,各种具有特殊用途的差示扫描量热法方法层出不穷。随着DSC热分析技术的成熟与发展, 会使其对食品中某些成分的性质研究更加方便、快捷, 并指导食品加工和贮藏。人们采用DSC对食品的研究在不断深入, 它作为一种热分析手段可以对食品的质量进行控制,在食品领域中将得到更广泛的应用。


相关文章

几分钟了解dsc曲线中结晶温度Tc

Tc是指玻璃由普通状态向超导体转变时的临界温度。对于非晶聚物,对它施加恒定的力,观察它发生的形变与温度的关系,通常特称为温度形变曲线或热机械曲线。非晶聚物有三种力学状态,它们是玻璃态、高弹态和粘流态。......

差示扫描量热法(DSC)测定高分子材料的氧化诱导期的方法

DSC差示扫描量热法对高分子材料氧化诱导时间的测定PE,全名为Polyethylene,是结构最筒单的高分子有机化合物,当今世界应用zui广泛的高分子材料,由乙烯聚合而成。聚乙烯不溶于水,吸水性很小,......

分析DSC曲线峰的意义

差示扫描量热法(DSC)是在程序控制温度下,测量输入到样品和参比样的热流差随温度(时间)变化的一种技术。该热流差能反映样品随温度或时间变化所发生的焓变:当样品吸收能量时,焓变为吸热;当样品释放能量时,......

DSC基本知识:什么是dsc曲线的基线

差示扫描量热法(differentialscanningcalorimetry,DSC),一种热分析法。在程序控制温度下,测量输入到试样和参比物的功率差(如以热的形式)与温度的关系。差示扫描量热仪记录......

DSC可选择测试温度范围

DSC测试温度范围受以下几个方面的限制: 1. 制冷附件:FACS(空气制冷系统): 室温(RT)~725℃;RCS(冷冻制冷系统): 有RCS40和RCS90......

梅特勒托利多推出新型闪速差示扫描量热仪FlashDSC2+

分析测试百科网讯近日,梅特勒-托利多推出新型闪速差示扫描量热仪(DSC),能够在很宽的温度范围内(从-95C至1000°C)进行测量。因此,FlashDSC2+可用于更多的材料,在材料表征领域实现了巨......

高分子领域常用的表征方法之示差扫描量热分析(DSC)

当物质的物理状态发生变化时,如结晶、熔融、相转变,或者发生化学反应,往往伴随着热学性能如热焓、比热容、热导率的变化。示差扫描量热法就是通过测定其热学性能的变化来表征物质的物理或化学变化过程。DSC在聚......

DSC差示扫描量热法

示扫描量热法(differential scanning calorimetry)这项技术被广泛应用于一系列应用,它既是一种例行的质量测试和作为一个研究工具。该设备易于校准,使用熔......

3款分析仪器获得2017年药物厂商评价创新大奖

近日,MedicineMaker杂志颁发了“药物厂商评价创新大奖”(TheMedicineMakerInnovationAwards),共15款产品获得该奖项。分析测试百科网讯由MedicineMak......

DTA、DSC,傻傻分不清楚

差热分析(DTA)试样在加热(冷却)过程中,凡有物理变化或化学变化发生时(如相变、熔化、沸腾、蒸发、晶格结构变化、化学反应),就有吸热(或放热)效应发生,若以在实验温度范围内不发生物理变化和化学变化的......