发布时间:2012-11-15 09:44 原文链接: 微生物所在酿酒酵母生态和群体遗传学研究中获新进展

  在发酵工业中广为应用的酿酒酵母(Saccharomyces cerevisiae),也是一种在生命科学研究中常用的模式生物。由于其较清晰的遗传背景、相对较小的基因组、完善的基因组和功能基因组学研究积累、明确的有性生殖循环等优势,除分子生物学领域外,正在成为比较与进化基因组学、生物地理学、群体遗传学、生态学和物种形成与演化机制等研究领域的模式生物。

  然而,科学家对这种也许是被研究得最为透彻的真核微生物在自然界中的生态分布和群体结构仍然知之甚少。以前的研究主要基于实验室和人工环境菌株,真正的野生菌株很少涉及。因此,对酿酒酵母的遗传多样性、驯化群体的起源与演化及人工选择对其表型和基因组变异的影响等基本问题,很难进行充分的阐释。

  近几年来,中科院微生物研究所真菌学国家重点实验室的白逢彦研究组对S. cerevisiae在自然界的生态分布进行了大规模调查,从分布在不同气候带、人工干扰程度不同的环境,包括人迹罕至的原始森林中,采集了数千份样品,使用特殊的选择性分离方法,成功分离出大量酿酒酵母菌株。进而对99株代表性菌株进行了群体遗传学、分子核型和有性生殖隔离等方面的研究。

  结果表明,S. cerevisiae在自然界中广泛分布,且存在明显的种群分化;与预想结果相反,树皮、森林土壤和腐木等样品的S. cerevisiae分离率均比各种果实样品的更高。野生S. cerevisiae存在清晰的群体结构,从测序的野生菌株中识别出了8个独立的演化谱系(CHN I-VIII)。来自原始森林的谱系(CHN I-V)位于演化树的底部,且已发生显著的遗传分化;而来自次生林、果园和果实的谱系(CHN VI-VIII)与工业应用(驯化)谱系一起,位于演化树的上部,且群体分化程度较低。这一结果显示了S. cerevisiae从原始森林,到次生林,人工环境,再到工业发酵过程的演化路径。原始森林谱系一般为自交群体,具有不同的分子核型,并已产生一定程度的生殖隔离;而人工环境谱系存在更多的遗传重组事件,人为因素促进了其群体间的杂交。与以前群体遗传和群体基因组学研究中应用的,被认为已代表了S. cerevisiae全球遗传多样性的一批菌株相比,我国菌株的遗传多样性指数高出近1倍。这一结果显示中国,或者东亚,可能是S. cerevisiae的起源中心。此外,该研究还在S. cerevisiae群体结构的塑造因素和葡萄酒及清酒驯化谱系的起源等方面,提出了新观点。

  上述研究已发表于Molecular Ecology (21: 5404–5417, 2012),期刊并在同期为本篇论文配发了一篇评论。评论指出,这一研究大幅度地提高了我们对酿酒酵母菌多样性的认识水平,并将大大提升我们对其生态、驯化和演化等方面的研究能力。

相关文章

新进展!构建新型双碱基编辑器

碱基编辑器是基于CRISPR/Cas9发展的新一代基因组编辑技术,可诱导单个碱基的突变,而鲜有关于特异性介导A-to-G和C-to-G双突变的碱基编辑工具的研究。此外,关于碱基编辑系统与染色质环境之间......

“画蛇添足”并非无迹可寻,远古时期的蛇是有脚的

成语有云:画蛇添足,形容做事多此一举。但蛇真的无脚吗?爬行动物专家认为,蛇的祖先是蜥蜴,在远古时期,蛇是有脚的,只是在演化过程中慢慢失去了。近日,这一说法得到了进一步证实。经过5年的研究,基于大规模多......

祝贺!中国科学家组团攻关,取得重大成果

日前,由复旦大学、西安交通大学等国内26个科研单位联合开展研究,绘制出了基于36个族群的中国人泛基因组参考图谱,相关成果于北京时间14日在国际权威学术期刊《自然》杂志发表。这也是我国科学家首次自主进行......

谷子高质量图基因组“面纱”揭开

谷子即小米,起源于中国,作为粮食作物深受老百姓喜爱。近日,中国农业科学院作物科学研究所特色农作物优异种质资源发掘与创新利用团队,通过对谷子种质资源的基因组分析,组装了首个谷子高质量图基因组,系统阐明了......

研究人员成功测序蒙特莫朗西酸樱桃基因组

密歇根州的酸樱桃产量在全美名列前茅,密歇根州立大学的一个研究小组启动了一个项目,旨在确定与酸樱桃树晚开有关的基因,以满足不断变化的气候的需要。他们首先将晚开的樱桃树的DNA序列与一个相关物种--桃子的......

一种单细胞藻类细胞中有7个基因组

一种50多年前收集并在实验室中生长的单细胞藻类,原来是一个由曾经独立的生物组成的奇怪的集合体,里面有不少于7个不同的基因组。4月27日,相关成果发表于《当代生物学》。“据我所知,单个细胞中有7个不同的......

解码基因组“暗物质”,拓宽生命认知疆域

人类约有2万个基因,仅占DNA的2%,剩下的98%是什么?这些区域如同基因组中的“暗物质”,有待科学家去发现。非编码RNA(核糖核酸)是基因组“暗物质”中的一类重要分子,最近十几年才被发现。它们不仅在......

世界上最快的生物运动背后的巨大蛋白

科学家们发现了Spirostomum的超快收缩的分子基础,Spirostomum是一种以令人难以置信的快速运动而闻名的毫米级单细胞原生动物属。利用从RNAi获得的高质量基因组,研究人员发现收缩结构,即......

2023年,基因组学革命“狂飙”到了哪一步?

2023年4月25日是DNA双螺旋结构发现70周年纪念日。70年前科学家的这一发现,将生物学研究带入分子时代。携带着生命遗传信息的DNA,以如是美妙的姿态,于纳米级的空间内,传递着生物世界变化万端、生......

“千人藏族基因组”重新评估藏人高原适应性特征

中国科学院昆明动物所研究员宿兵团队与西藏大学、西藏阜康医院等单位研究团队合作,利用大规模WGS(全基因组测序)数据,构建了首个藏族人群基因组参考面板(1000Tibetan-GenomePanel,1......