发布时间:2013-04-03 09:20 原文链接: 生化与细胞所发现IPP5可抑制初级感觉神经元突起生长

  初级感觉神经元是一种假单极神经元,从胞体生长出一根轴突在不远处分为外周支和中枢支。尽管两分支来自同一根轴突,但损伤后的再生能力却截然不同:外周分支损伤后容易再生,而中枢分支损伤后很难再生。以前的观点认为,两分支再生能力的迥异是由其所处环境的不同所致,但近来越来越多的证据表明,初级感觉神经元的内在生长因素在该过程中扮演更重要的角色。目前,虽然一些促进神经再生的神经元内在因素和相应分子机制被揭示,但对神经元内在的抑制性分子及其作用机制还知之甚少。

  近日,Journal of Cell Science发表了中国科学院上海生命科学研究院生物化学与细胞生物学研究所鲍岚研究组的研究工作:IPP5作为一个神经元内在因子抑制初级感觉神经元突起生长。IPP5是一个新型的蛋白磷酸酶1(PP1)抑制因子,IPP5从大鼠胚胎 14.5天到成年一直选择性地高表达在初级感觉神经元中,并且在成年大鼠坐骨神经损伤动物模型中显著下调。

  研究人员发现,IPP5作为一个神经元内在因子抑制初级感觉神经元突起生长。这种抑制作用依赖于IPP5与PP1的结合和对PP1蛋白磷酸酶活性的抑制,IPP5与PP1、TβRI 受体形成复合体,调控转化生长因子-β(TGF-β)/Smad信号通路来抑制神经突起的生长。该研究揭示了选择性高表达在初级感觉神经元中的IPP5对其生长的功能调控和分子细胞机制,扩展了对神经元内在的抑制性分子的理解。该项工作由博士研究生韩清见等在鲍岚研究员的指导下完成。

  该工作得到了中国科学院、国家自然科学基金、科技部蛋白质重大研究计划等项目的资助。

生化与细胞所发现IPP5可抑制初级感觉神经元突起生长

相关文章

感觉神经元的过度机械传导会导致关节挛缩

近日,美国斯克利普斯研究所ArdemPatapoutian及其小组发现,感觉神经元的过度机械传导会导致关节挛缩。这一研究成果于2023年1月13日发表在国际学术期刊《科学》上。研究人员表示,远端关节挛......

更逼真人工有机神经元问世

瑞典林雪平大学研究人员创造了一种人工有机神经元,能逼真模仿生物神经细胞的特征。这种人工神经元可刺激自然神经,使其成为未来各种医学治疗的有前途的技术。相关研究发表在最近的《自然·材料》杂志上。新开发的人......

神经元调节反应敏感度机制发现

科技日报柏林12月10日电(记者李山)近日,德国波恩大学领导的科研团队揭示了大脑中的神经元调整反应敏感度的机制。他们发现一种特殊酶可调控中间神经元,进而独立调节神经细胞对传入信号的反应敏感度。相关成果......

大脑神经元连接协调恰似“交响乐”

人类大脑有近860亿个神经元,每个神经元有多达10000个突触,形成了一个庞大的互连网络,构成了行为和认知的基础。最新一期《科学》特刊连发4篇文章,综述了科学家对大脑复杂连接(“连接组”)及其如何驱动......

重大突破!科学家发现可能导致阿尔茨海默病的新蛋白质

阿尔茨海默病(AD)是一种使人衰弱的渐进性疾病,开始时是轻微的记忆丧失,慢慢地破坏了认知功能和记忆。它目前没有治愈方法,预计到2050年将影响全球1亿多人。在美国,根据国家老龄化研究所的数据,AD是老......

人工神经元实现与活体细胞“对话互动”

揭秘大脑功能,解读脑部信号,不仅可为脑疾病提供诊疗依据,也能为研制类脑芯片提供思路。脑机接口是脑研究领域的热点,它是人脑与外界电子设备信息交互的通道,也是监测与解析脑部活动、治疗神经疾病、构建智能假肢......

鸟类维持更多脑细胞秘密找到了

鸟类有令人印象深刻的认知能力,有些鸟甚至表现出了高水平的智力。与同等大小的哺乳动物相比,鸟类大脑也包含更多的神经元。那么,鸟类如何维持更多脑细胞呢?现在科学家发现,其背后的秘诀是它们的神经元需要更少的......

科学家鉴定出“好斗”抑制基因

美国索尔克研究所科学家的一项新研究确定了大脑中的一个基因和一组细胞,它们在抑制果蝇的攻击性方面起着关键作用。该研究结果7日发表在《科学进展》上,或有助于解释帕金森病等疾病——帕金森病有时会导致行为改变......

中国指挥与控制学会正式发布我国城市大脑首批标准

9月1日,中国指挥与控制学会在北京举行城市大脑首批标准新闻发布会,正式发布《城市大脑术语》《城市大脑顶层规划和总体架构》《城市大脑数字神经元基本规定》等三项团体标准。这是2015年城市大脑在中国被提出......

科研人员发现控制享乐性进食调控器

论文截图8月26日,中国科学院深圳先进技术研究院、深圳理工大学(筹)朱英杰课题组在Nature旗下著名期刊《分子精神病学》(MolecularPsychiatry)发表最新研究成果。该研究揭示,为了追......