发布时间:2014-12-02 14:02 原文链接: GeorgeChurch专访:CRISPR是如何引领基因编辑革命的?

  

George Church:哈佛医学院著名遗传学家

  11月26日,Nature Communications杂志发表了遗传学界的大牛George M. Church领导哈佛医学院的团队,在人iPS细胞中进行了CRISPR基因编辑。他们将全基因组测序和靶向深度测序结合起来,评估了Cas9编辑iPS细胞时的脱靶效应,还鉴定了一个影响Cas9特异性的单核苷酸变异(SNV)。

  CRISPR基因编辑和iPS重编程是近年来的两大热点技术。CRISPR/Cas9已经在多个领域中展现了自己强大的特异性基因靶标能力。而iPS重编程在构建疾病模型和新药开发中有着很高的应用价值。将CRISPR应用到iPS细胞中去,似乎是一件大势所趋的事情。

  11月30日,美国波士顿发行量最大的报纸《波士顿环球报》对George M. Church进行了题为“A Tool to edit DNA revolutionizing research in Boston area”的专访,本文是对其专访稿的翻译。

  CRISPR技术诞生的背景意义

  我们的自然界存在许多奇怪的生物现象:例如构造简单的微生物(细菌)却存在具有记忆功能的免疫系统。微生物(细菌)经过一系列外界刺激后,它能够迅速记住其中的变化模式,并在下一次刺激到来之前作出相应应对措施。

  科学家关心这些现象不仅仅是处于对科学的好奇心,我们更加在乎的是细菌来改造生物的机制。通过这种CRISPR技术,提高了基因组的编辑精度,即科学家剪切和插入合成的DNA片段的速度,创造了许多动物模型来治疗人类癌症,或者是创造了血红细胞来抵抗HIV病毒。

  CRISPR从发现到应用的历程

  CRISPR基因组编程技术是近两年兴起的一种新技术,2013年两篇Science新闻开创了CRISPR基因组编辑技术的新时代,随后生命科学界刮起了 CRISPR风暴,迄今为止CRISPR方法已迅速席卷了整个动物王国,成为DNA突变和编辑的一种重要技术。

  CRISPR全称为clustered regularly interspersed short palindromic repeats,是源于细菌及古细菌中的一种后天免疫系统,它可利用靶位点特异性的RNA指导Cas蛋白对靶位点序列进行修饰。直到今年科学家们才开始利用这一系统在活体动物基因组中生成靶向突变,删除原有的基因或插入新基因。

  CRISPR技术的优点

  与过去数十年里进行基因工程的其它任何方法相比,CRISPR技术的优点就在于它使用的是单一的酶。这种酶不需要改变你设定目标的每一个点,你只需要使用 一个不同的RNA副本对它进行重新编辑,这很容易设计和实现。

  生命科学突破奖获得者中有几位科学家则分别是在遗传学,RNAi等领域的突出贡献而获奖,如 哈佛医学院遗传学教授加里·鲁夫昆就是一位微小RNA(miRNA)研究领域的著名科学家,他曾发现了首例微小RNA:lin-4通过与目标信使RNA不 完全碱基配对,来调控这些目标的翻译的机制,并发现了第二个微小RNA——let-7,以及它在动物(包括人类)系统发育中如何保护的。

  2008年获拉斯克基础医学奖(Albert Lasker Basic Medical Research Award)。 miRNA是一类非编码小RNA,其长度为19到25个核苷酸,在真核生物的多种发育和生理过程中发挥着重要的调节作用。加里·鲁夫昆等人就曾通过分析比 较了86个不同真核基因组序列,分析了小RNA辅助因子的系统发生谱,并指出,在RNA剪接和小RNA介导的基因沉默之间存在密切关联。

  CRISPR技术给波士顿地区生物工程发展带来的影响?

  “美国雅典”的波士顿(英语:Boston)是美国马萨诸塞州的首府和最大城市,也是在人口上美国的第21大的城市。今天的波士顿是高等教育和医疗保健的中心,它的经济基础是科研、金融与技术—特别是生物工程,并被认为是一个全球性城市或世界性城市,哈佛大学、麻省理工及威廉姆斯学院等世界名校都坐落在这里。

  在波士顿地区,有2家公司治疗,与基因变异相关的疾病。与此同时,几乎每周都能看到基因编辑工具被用于一个新的领域:MIT研究者已经构建了带有肝脏肿瘤的老鼠模型;哈佛大学的研究者通过基因编辑来破坏并降低小鼠体内的胆固醇水平;波士顿儿童医院的科学家利用干细胞,重组了基因变异引起的血液罕见病。

  波士顿地区与CRISPR技术相关的公司

  目前,波士顿地区与CRISPR技术相关的公司有2家:Editas Medicine,是一家利用基因编辑技术进行基因治疗的公司;另一家CRISPR Therapeutics 开展的业务也与Editas Medicine相似。

  另外,波士顿许多其他领域的科学家也陆续采取这项技术作为他们感兴趣领域的工具。例如:癌症研究者发CRISPR可以用来驱动癌症,过去几年都一直用的是老工具。

  生物界对CRISPR的评价

  美国马萨诸塞州博大研究院的创始人Eric Lander(Eric Lander是国际人类基因组计划美国部分的主要贡献者,开发了很多用于现代基因组研究的工具软件)表示:最让人惊讶的是,细菌已经在10亿年前发明了这项技术,然而当我们为人全基因组和小鼠全基因组设计这种方式时,作用机制却不是那么明朗。“CRISPR”技术真的是一个强大的工具,在不到2年的时间里,从一个不太确定有用的idea中,到目前所有的毕业生都将“CRISPR”当做一项常识

  德国亥姆霍兹感染研究中心)的艾曼纽·卡彭特(Emmanuelle Charpentier)及美国加州大学伯克利分校的詹妮弗·杜德纳(Jennifer Doudna)表示:“修改生物体基因特定部分的能力,对于增加 我们对生物体的认知是必不可少的。这是该领域的一种巨大跨越,因为它意味着基本上任何人都能够使用这种基因编辑或者重新编写的技术带给哺乳动物基因变 化。”

  马萨诸塞州总医院病理学副主任Keith Joung博士表示:当我第一眼看到CRISPR基因组编辑技术论文时,就觉得如果这是真的,所有的游戏规则将改变。正好在接下来的几个月里,博大研究院的 Church和张锋(Feng Zhang)展示了“CRISPR”技术的魅力:采用这项技术对小鼠和人源细胞的基因进行编辑,发现“CRISPR”可以再有机体内进行编辑,并对斑马鱼胚胎的基因组进行编程。

  麻省理工学院科赫研究所综合癌症研究中心的 Tyler Jacks表示:CRISPR方法真心很强大,现在我们实验室几乎每一项目都会用到这项技术。

  哈佛大学干细胞与再生生物学研究所也用到了这项技术,顺利删除了感染HIV病毒的必须基因——CCR5。研究所副教授Derrick Rossi表示:过去的基因编辑工具远不及现在的CRISPR技术。其最新一项研究利用CRISPR Cas技术有效及精确地编辑删除了直接从患者处采集的细胞——人类造血干细胞和T细胞中的临床相关基因,构建出了一种能够阻断HIV侵袭和破坏患者免疫系统的有效治疗方法。

  麻省理工学院科赫研究所应用生物学Daniel Anderson教授表示: 基因组编辑技术CRISPR治愈成年老鼠活体所患的遗传性肝脏疾病将很快用到人身上,说明Crispr的技术可对庞大的脱氧核糖核酸(DNA)数据库作出研究人员所称的高精度微调。

  哈佛大学干细胞与再生生物学系生物学家、诺贝尔奖获得者Craig Mello表示:正是有了CRISPR,使得过去一切不实际的想法变成了可能。其补充道:我们的生物机体究竟是如何工作仍然是一个谜底,我们也仅仅是刚刚迈入了这个“生命”领域的边缘。

  如何评价您的工作?

  过去几十年的时光里,生物学家尽管知道研究细菌的DNA及它们复制的起点,但是那似乎看起来漫无目的。随后的十年时间里,这一遗传学问题逐渐明朗,并且提供了一个简单的方法,使细菌插入和剪切,通过带有噬菌体的病毒。

  George Church表示:我是一个技术狂,年轻时,我会采取不限于生物学的各种技术手段,也使得我看到了许多罕见的食物。我曾预测到将来可能会在人体细胞中编辑基因,于是一旦将实验室组建起来,就立马投入这项工作,并且发现在人体细胞中编辑DNA很有效。

  CRISPR(全称clustered regularly interspaced shortpalindromic repeats) ,是2012年由加州和欧洲的科学家共同发现,并被寄希望于获得诺贝尔奖。但是其快速增长和广采用,却是由我们波士顿的科学家来传播的,例如将斑马鱼胚胎中细胞移植到小鼠和人源细胞中。这项技术的广泛应用使得“CRISPR”也逐渐由一个短语变成了一个动词,很多科学家在要剪切或者删除基因时都会提到 “CRISPRing”。

相关文章

世界范围内的中风风险上升了50%!

据世界卫生组织称,自2005年以来,全世界发生中风的几率增加了50%,而另一份由世界卒中组织发布的报告指出,每年有多达1200万"新"中风患者。总而言之,这些数据表明,全球大约四分......

重订的遗传时钟

加州大学圣地亚哥分校的科学家们已经开发出一种可能减缓细胞衰老过程的方法,使用一个振荡的基因"时钟"。在测试中,发现酵母细胞的寿命明显长于那些没有的细胞。我们都害怕的熟悉的衰老症状从......

大脑的冷静药

一个国际科学家团队已经确定了大脑中驱动焦虑症状的一个基因。重要的是,对该基因的修改被证明可以降低焦虑水平,为焦虑症提供了一个令人兴奋的新的药物目标。这一发现由布里斯托尔大学和埃克塞特大学的研究人员领导......

麻省理工DNA测序新方法:准确性提高1000倍!

近日,麻省理工学院布罗德研究所和哈佛大学的一组研究人员开发了一种新的下一代测序方法,可以检测单个DNA分子内的基因突变。“这种方法的美妙之处在于它不是对测序方式的彻底改革,”该研究的资深作者、格斯特纳......

张锋创立的Editas公司发布基因敲入技术,助力开发新疗法

撰文|王聪编辑|王多鱼排版|水成文尽管CRISPR-Cas基因编辑技术在基因敲除方面取得了重大突破,并深刻改变了基因编辑领域乃至整个生命科学的研究模式。但CRISPR-Cas基因编辑技术通常是以破坏D......

在两种“老化”状态间循环,设计基因调控回路延缓衰老

人类的寿命与个体细胞老化有关。3年前,美国加州大学圣地亚哥分校的一组研究人员破译了衰老过程背后的基本机制。在确定了细胞衰老过程中遵循的两个不同方向后,研究人员通过基因操作这些过程来延长细胞的寿命。据发......

因美纳NovaSeq™XPlus在华交付赋能中国基因组学无限前景

2023年4月28日,中国上海——今天,全球基因测序和芯片技术的领导者因美纳于天津、深圳、上海三地同步举行NovaSeq™XPlus“点亮”仪式,宣告首批在华交付NovaSeq™XPlus高通量测序平......

华大智造宣布超高通量基因测序仪落地南澳基因组学中心

2023年4月27日,华大智造宣布超高通量基因测序仪DNBSEQ-T7落地南澳基因组学中心(SAGC),该中心将基于DNBSEQ-T7测序平台开展各项科学研究,助力全面推动澳大利亚基因组学研究发展和成......

设计基因调控回路延缓衰老

人类的寿命与个体细胞老化有关。3年前,美国加州大学圣地亚哥分校的一组研究人员破译了衰老过程背后的基本机制。在确定了细胞衰老过程中遵循的两个不同方向后,研究人员通过基因操作这些过程来延长细胞的寿命。据发......

多国加快推进人工智能应用监管

随着聊天机器人ChatGPT等人工智能(AI)应用快速发展,全球监管机构也在加快探索如何妥善进行监管,在鼓励技术创新的同时保护公众利益。据美联社报道,美国联邦贸易委员会25日表示,政府将毫不犹豫地打击......