2018年1月8日,加州大学旧金山研究所(UC San Francisco,UCSF)1、丹麦哥本哈根大学(University of Copenhagen)和南丹麦大学(University of Southern Denmark)2、英国帝国理工学院和里尔大学3等机构同期在《Nature Genetics》发表三篇文章,颠覆了人们对初级纤毛的旧认识,证明除神经元之间的突触化学或电沟通以外,长期不受重视的初级纤毛(primary cilia)化学信号对大脑平衡能量和摄食行为非常重要作用。

小鼠下丘脑神经元(红色,细胞核标记为蓝色)和它们的初级纤毛(绿色)

  一项小鼠和两项人类遗传学研究分别描述了腺苷酸环化酶3(adenylyl cyclase 3,ADCY3)和黑色素皮质素受体(melanocortin 4 receptor,MC4R)两种蛋白质在肥胖和糖尿病发展中的重要作用。定位于下丘脑神经元纤毛的MC4R蛋白质影响小鼠进食量;巴基斯坦格陵兰岛和美国等地人口遗传学分析表明,神经纤毛基因ADCY3变异可导致肥胖和糖尿病风险增加。

  现代人肥胖流行主要受环境因素驱动,包括唾手可得得无限热量和久坐不动的生活方式。然而,并非所有处于相同(不健康)环境的人都会超重。研究表明,遗传因素占不健康体重增加的40-70%。ADCY3是历史上首个与肥胖相关的单基因突变,该基因功能对控制体重起关键作用。

  1990s以来,遗传学家已经证明,导致人类严重超重的大多数基因变异似乎破坏了大脑下丘脑(hypothalamus)的神经网络。“饥饿回路”可监测瘦素(leptin)水平,利用这些信息调节食欲和能量消耗以保持体重稳定。瘦素基因本身或者监测或响应瘦素的相关神经基因发生突变发生突变的人(和小鼠),由于无法感知身体已经储存了大量脂肪,就会不断进食,好像一直在挨饿一样。

  该系统的工作原理脂肪细胞分泌瘦素,当瘦素经过位于下丘脑的弓状核(arcuate nucleus)时,神经元将瘦素水平信息呈递给下丘脑室旁核(paraventricular nucleus,PVN)的一组神经元,这组神经元负责评估瘦素水平高(代表体内有多余脂肪)或低(代表能源储备危机)。根据这些信息PVN神经元向其他脑区发出指令,协调机体食欲和能量水平。

  最初引起科学家们注意的是一类罕见疾病纤毛病(Ciliopathies),突变基因影响纤毛功能,患者出现多(手指)脚趾、视网膜退化和肥胖等症状。“成年小鼠神经元初级纤毛基因突变,会导致肥胖,证明纤毛病的肥胖表现可能与初级纤毛在神经元中的功能有关。”

纤毛病(Ciliopathy)

  研究人员通过小鼠模型证实突变MC4R(一类参与摄食调节的G蛋白偶联受体)编码基因是严重肥胖(BMI>40)的最常见遗传因素之一。

  UCSF遗传学家Christian Vaisse和同事发现,弓状核神经细胞生产的化学信号被富集在PVN一组神经元初级纤毛上的MC4R分子受体感知,MC4R基因突变与瘦素水平调节的饥饿回路相关。

(Christian Vaisse)

  “我们认为,神经元初级纤毛上的MC4R突变是导致人类严重肥胖的重要环节,”Vaisse说。

  通过荧光标记研究人员发现,MC4R与ADCY3共定位在初级纤毛上。特异性地阻断含有MC4R神经元纤毛上的ADCY3,会导致小鼠肥胖。预示着人类肥胖可能也与ADCY3蛋白有关。

(MC4R和ADCY3在PVN神经元纤毛上的定位情况)

  另外两项人类研究证实了Vaisse的猜测,人类遗传学研究表明导致ADCY3功能缺陷的遗传变异会增加个体患肥胖和2型糖尿病风险,是导致单基因遗传严重肥胖的主因。

  这些发现为全球肥胖症流行提供了一个新的解决视角——纤毛上的受体信号。

  整个大脑的神经元都有纤毛,这是否意味着纤毛可能对神经元存在广泛影响,比如影响奖赏、学习和记忆以及情绪状态神经网络等等。

  很多疾病缺乏有效药物治疗的原因是,大多数患者的患病机理还没被真正理解。初级纤毛MC4R信号下游究竟还发生了什么,仍有待阐明。当这条通路的确切生物学机理被彻底揭开的时候,就是人类有办法治疗纤毛病遗传缺陷的时候。

相关文章

超100个基因在“操纵”人类头发颜色

你的头发天然是黑色、白色,还是黄色、棕色?这些是体内的基因说了算。记者从中国科学院获悉,由该院北京基因组研究所联合多国科研机构科学家的一项最新研究发现,影响人类头发颜色的基因超过100个,这打破了“人......

研究发现基因技术有望提高农作物产量

英国和美国研究人员首次通过田间试验证实,利用基因技术增加植物叶片中一种天然蛋白质的产量,能显著促进植物生长,有望成为农作物增产新方法。植物通过光合作用将二氧化碳和水转化为有机物,并释放出氧气,但光合作......

人类血浆蛋白质组遗传图谱公开有助鉴定新的治疗靶点

英国《自然》杂志6月6日发表了一项遗传学最新成果:剑桥大学研究团队量化了人体血浆中的3000多种蛋白质,成功绘制出人类血浆蛋白质组遗传图谱,其中89%前所未知。该研究发现的遗传变异与个体蛋白水平之间的......

美国农业部加入地球生物基因组计划

美国农业部(USDA)近日宣布,将正式加入“地球生物基因组计划”(EBP)的合作研究。USDA认为通过加入这个生物学领域的“登月计划”,必将给未来农业发展带来数百万个强大的、全新的应对挑战解决方案。E......

从以色列到日本,国际合作揭开罕见病病因

七年前,一名婴儿出生在以色列海法的Rambam医学中心。他刚出生时状况良好,但两小时后癫痫发作。医务人员立即将他转移到新生儿重症监护病房,并开展各项检查,以便尽快做出诊断。然而,每项结果都是阴性的。这......

3.75亿美元!肿瘤筛查业领先者Myriad高价收购Counsyl公司!

1991年成立的MyriadGenetics公司,致力于以基因医学来开发医疗及分子诊断产品,他们利用多种专有proteomic技术来发现疾病基因进而帮助医生进行临床诊断。而Counsyl是一家成立于2......

热度不减消费级基因检测盈利难题仍待解

通过唾液能够分析出祖源信息和遗传风险让消费级基因检测受到消费者和资本关注,而代表性企业23魔方时隔两个月再次获得融资让该市场热度持续升温。5月31日,消费级基因检测公司23魔方宣布完成B3轮融资,此次......

基因探索|SciRep:科学家利用基因编辑技术治疗艾滋病

CRISPR/Cas9系统为编辑HIV-1病毒基因组提供了一种新的有潜力的工具,近日来自日本神户大学医学院感染疾病中心及健康科学研究生院国际卫生系的研究人员设计了一种RNA引导的CRISPR/Cas9......

直击|基因检测企业23魔方获6200万元B3轮融资

5月31日午间消息,基因检测企业23魔方今日宣布完成B3轮融资,由辰德资本领投,软银中国,本草资本,经纬中国、雅惠医疗跟投,总额6200万元人民币,B轮合计融资超2亿元人民币。今年3月,23魔方刚刚宣......

现代新兴学科:胎盘、早期发育、基因、妊娠环境与人类大脑

在许多文化中,胎盘(placenta)是神话和仪式的主题,然而,在科学界它却是最被忽视的人体器官。不可否认,胎盘是唯一一个不用被送到实验室检查就可以从人体上摘除的器官。“我们第一次找到了早期发育并发症......