发布时间:2019-12-18 17:30 原文链接: 原肠运动时期始发态多能性的独特染色质状态

   清华大学生命学院颉伟研究组在《自然-遗传》期刊以长文形式报道了题为“表观遗传组学分析揭示了原肠运动时期始发态多能性的独特染色质状态”(Epigenomic analysis of gastrulation identifies a unique chromatin state for primed pluripotency)的研究论文。该研究通过多种高灵敏染色质表观遗传学分析手段,发现小鼠植入后胚胎中的始发态多能性(primed pluripotency)细胞具有独特的染色质结构,包括发育调控关键基因的启动子区域富集非常强的H3K4me3/H3K27me3修饰(super-bivalency)。这一重要发现不仅阐明了细胞命运决定过程中动态的染色质调控机制,还为体外系统更好的模拟植入后胚胎发育以及探索早期发育相关疾病提供了新的研究方向。

  在胚胎植入子宫后,伴随着原始态多能性(naive pluripotency)向始发态多能性的转变,囊胚中的内细胞团(inner cell mass)分化为胚区的上胚层(epiblast)和胚外区的脏内胚层(visceral endoderm)。由上胚层细胞进一步通过原肠运动形成的外胚层(ectoderm)、中胚层(mesoderm)与内胚层(endoderm)则构成了器官发生以及个体形成所需要的细胞基础。然而,由于谱系之间分离比较困难以及细胞数量稀少,人们对此过程中染色质调控机制仍然知之甚少。

  在该研究中,研究人员首先在小鼠胚胎发育的6.5与7.5天分离了不同胚层,并利用颉伟课题组前期开发的STAR ChIP-seq、miniATAC-seq与sisHi-C技术,系统地检测了组蛋白修饰(H3K4me3、H3K27me3、H3K27ac)、染色质开放性以及三维基因组高级结构的状态。研究人员发现,E7.5天外胚层的增强子在E6.5天上胚层中已经提前开放,而中胚层与内胚层中的增强子则是重新建立的,支持外胚层是上胚层细胞分化的默认分化状态的假说。

  有趣的是,在具有始发态多能性的E6.5天上胚层中,研究人员发现H3K4me3与H3K27me3在一部分发育基因的启动子及附近区域呈现非常强的双价(bivalency)分布模式,研究人员定义这种状态为super bivalency。Super bivalency能够持续到外胚层,而在植入前早期胚胎、E5.5天上胚层、E7.5天中胚层、内胚层以及小脑、心脏等体细胞中均不能被检测到。

  此外,通过sisHi-C实验,研究人员发现在E6.5天上胚层中被super bivalency标记的基因在三维空间中具有很强的互相作用。为了研究super bivalency是如何建立的,研究人员聚焦于KMT2B(又名MLL2、WBP7),一种负责特异性催化双价基因启动子区域H3K4me3的甲基转移酶。前期研究表明,该催化酶在受精卵中的缺失会导致小鼠胚胎发育致死,而从E11.5天敲除却并不影响胚胎发育。

  研究人员发现,在受精卵时期敲除Kmt2b将会影响E6.5上胚层中双价基因启动子区域的H3K4me3建立。与此同时,super bivalency标记的基因的三维空间作用也伴随下降。最后,super bivalency的缺失极大地影响了与部分发育核心调控基因的激活。

  综上所述,该研究在小鼠植入后胚胎发育过程中系统地研究了表观遗传组建立的分子机制,发现了始发态多能性中存在super bivalency这一独特的染色质状态,并进一步揭示了在细胞命运决定过程中super bivalency参与调控核心基因转录激活的重要功能。

  颉伟教授为本文的通讯作者,清华大学生命科学联合中心博士研究生向云龙与博士后张宇为本文共同第一作者。合作实验室包括中国科学院动物研究所李磊研究组与美国密歇根大学的Sundeep Kalantry研究组。该课题得到了清华大学实验动物中心,生物医学测试中心基因测序平台以及计算平台的大力协助和支持。该研究获得了北京市科学技术委员会生命科学前沿培育项目、国家自然科学基金委、北京市结构生物学高精尖创新中心、国家重点基础研究发展计划(973计划)、清华北大生命科学联合中心以及美国霍华德休斯医学研究所(HHMI)国际研究学者的经费支持。


相关文章

科学家揭示体外组装和体内染色质纤维普遍折叠模式

9月13日,中国科学院生物物理研究所朱平研究组在国际期刊《细胞报告》(CellReports)在线发表论文,利用冷冻电子断层三维成像方法,揭示了体外组装和体内染色质纤维一种普遍存在的双螺旋折叠模式。在......

NatureMethods:北大汤富酬团队揭示单个细胞内高阶染色质结构

调控基因组元件的高阶三维(3D)组织为基因调控提供了拓扑基础,但尚不清楚哺乳动物基因组中的多个调控元件如何在单个细胞内相互作用。2023年8月28日,北京大学汤富酬团队在NatureMethods(I......

生物物理所揭示染色质组装因子CAF1介导核小体装配的结构基础

在真核细胞分裂过程中,染色质结构的重新建立对于维持基因组完整性和表观遗传信息传递至关重要。DNA复制一方面破坏母链DNA的亲本核小体,另一方面新生核小体必须在DNA子链上重建。染色质组装因子CAF-1......

揭秘早期哺乳动物的发育过程

由于小鼠的易实验性和强遗传性,其一直是生物医学研究中使用广泛的动物模型。但是,胚胎学研究发现,小鼠早期发育的许多方面与其他哺乳动物不同,从而使有关人类发育的推论复杂化。英国剑桥大学等研究团队合作构建了......

人类发育中胚胎最高分辨率图像

现有许多荧光标记活细胞的方法都涉及对细胞的基因修饰,因此不适用于研究人类活胚胎。而在最新发表于《细胞》(Cell)上的一项研究中,研究者使用了一种无需基因修饰的荧光染色技术,并首次捕捉到了分辨率达细胞......

以色列一公司研发AI优选胚胎技术 可提高试管婴儿成功率

以色列一家生殖科技公司日前研发出一种人工智能(AI)优选胚胎技术,可有效提高试管婴儿成功率。美国福克斯新闻网12日报道称,该技术通过AI软件对体外受孕的胚胎进行筛选,从而提高胚胎移植后的着床成功率。这......

新进展!构建新型双碱基编辑器

碱基编辑器是基于CRISPR/Cas9发展的新一代基因组编辑技术,可诱导单个碱基的突变,而鲜有关于特异性介导A-to-G和C-to-G双突变的碱基编辑工具的研究。此外,关于碱基编辑系统与染色质环境之间......

母乳让心肌细胞能“吃”脂肪

生物活着的每一秒,心脏都在跳动。构成心脏的心肌细胞是当之无愧的耐力型选手,它们通过收缩使心脏跳动。此前的研究发现,胚胎心肌细胞主要靠燃烧葡萄糖和乳酸获得能量。一旦成熟,它们就转为依靠燃烧脂肪酸(脂肪的......

食蟹猴胚胎3D长时程体外培养模型

2023年5月11日,中国科学院动物研究所/北京干细胞与再生医学研究院和美国宾夕法尼亚大学的研究人员在《细胞》杂志在线发表封面文章。他们建立了一个可支持食蟹猴胚胎体外发育至受精后25天的3D长时程培养......

揭开软骨鱼活产的神秘面纱

胎生,或生下活的幼仔的能力通常与哺乳动物有关。然而,这种繁殖方式在各种脊椎动物中已经进化了多次,有150多次单独出现。这包括爬行动物中的100多例,骨鱼中的13例,软骨鱼中的9例,两栖动物中的8例,以......