发布时间:2023-02-27 11:15 原文链接: 脂质纳米颗粒有望“大显身手

 在应对新冠肺炎的鏖战中,脂质纳米颗粒(LNP)发挥了重要作用且引发极大关注。英国《自然》杂志网站2月22日报道指出,除用于研制新冠疫苗,LNP还可应用于治疗癌症等疾病,不过科学家们仍面临着降低其毒性,以及将其输送到人体内合适器官等难题。

  小块头 大用途

  LNP将小分子输送到人体内,其输送的最著名的“货物”是信使核糖核酸(mRNA),后者是一些新冠疫苗的关键成分。一旦进入人体内,LNP会通过内吞作用进入细胞内体,并释放到细胞质中。

  Acuitas公司为辉瑞开发的mRNA新冠疫苗研制LNP,该公司高级科学家芭芭拉·梅称,新冠疫情加速了人们对LNP的认知、关注和接受程度。接下来,科学家可能会研发针对其他传染病(如艾滋病或疟疾)或非传染性疾病(如癌症)的LNP-mRNA疫苗。而且,LNP的运载潜力并不仅局限于mRNA,它可运载不同类型的载体,将在多个治疗领域大显身手。

  超越mRNA疫苗

  LNP领域目前最令人兴奋的方向是基因编辑。

  LNP可携带基因编辑机制,如Cas9 mRNA或引导RNA等进入细胞,这使LNP能用作基因治疗递送系统。目前,有一种基于LNP的CRISPR-Cas9候选疗法正在开展临床试验,其靶向肝脏中的PCSK9基因,旨在治疗家族性高胆固醇血症。其他基因疗法还包括利用LNP在囊性纤维化患者体内操纵CFTR基因,或用于治疗罕见遗传疾病。

  LNP的另一个潜在应用是免疫治疗。使用嵌合抗体受体(CAR)对T细胞或自然杀伤(NK)细胞等淋巴细胞进行基因修饰已被证明对血癌有用。这一过程通常会从患者血液中提取淋巴细胞,对其进行编辑以表达CAR,然后将其重新输回患者血液内。但LNP可让CAR mRNA穿梭到标靶淋巴细胞,从而在体内表达所需的CAR。体内研究证明这一过程能对小鼠T细胞起作用,相关研究刊发于《科学》杂志。

  ProMab生物技术公司2022年9月在CAR-TCR峰会上展示了初步数据,涉及LNP将CAR mRNA引导至NK细胞,然后杀死靶细胞。研究人员称,RNA-LNP是一项激动人心的新技术,可用于输送CAR和对付癌症的双特异性抗体。

  LNP还可输送小干扰RNA(siRNA)。例如,美国食品和药物管理局批准的第一种siRNA药物patisiran,使用LNP递送针对名为转甲状腺素的基因产物的siRNA,后者通过抑制转甲状腺素蛋白的产生来治疗一种淀粉样变。

  降低毒性 提高疗效

  不过,科学家们指出,为使LNP能充当最佳载体,他们仍需要进行大量研究。主要挑战之一是:与用于研制疫苗相比,LNP用于基因疗法和其他常规疗法时需要更高剂量,高剂量LNP会引发细胞的毒性反应,因此降低LNP的毒性成为当务之急。

  有不同方法可降低LNP治疗的毒性。一是通过研究脂质如何影响毒性。以色列特拉维夫大学纳米医学实验室主任丹·皮尔一直在开发一系列新脂质,这些脂质具有生物降解性更强、免疫原性更低等特点。他相信,免疫原性更低的脂质对治疗效果会更好。

  这也将有助于LNP更有效地交付“货物”。目前影响LNP递送效率的一个障碍是:当LNP被细胞吸收且并没有完全释放到其目标中时,它们往往会被困于细胞的核内体中。美国卡耐基梅隆大学教授凯瑟琳·怀特黑德认为,提升核内体逃逸能力对未来几代LNP至关重要,逃逸能力越强,使用的LNP剂量就越低,从而能大幅减少毒副作用。

  到达正确的器官

  影响LNP大展拳脚的另一个障碍是让其能到达身体不同部位。LNP一般会转移到肝脏,但对于靶向基因治疗等应用,有必要将其引导到肺、肾或脑等其他器官。

  研究人员称,要防止LNP在肝脏积聚,也要将其引导到特定位置,如它们需要穿过血脑屏障才能在大脑中发挥作用。

  目前有不同团队在尝试不同方式,但还没有明确的答案。一些小组正在研究LNP中的脂质如何影响其对不同器官的靶向性;另一些小组则在探索在LNP表面添加靶向配体以帮助它们与特定细胞结合。

  研究人员指出,如果能让LNP绕过肝脏,进入肺或脾脏等其他器官,那么这将显著增加其治疗潜力。

  LNP-mRNA新冠疫苗广泛应用的一个障碍是需要将其保存在极低温度下,而热稳定LNP能在室温下保持稳定。耐热配方对改变mRNA疫苗和疗法的前景至关重要。


相关文章

合肥研究院等设计出肿瘤微环境响应的复合纳米材料

近日,中国科学院合肥物质科学研究院智能机械研究所研究员吴正岩团队,联合山东滨州医学院教授张桂龙和魏鹏飞,设计出一种核壳结构铜基纳米复合材料。该复合材料具有肿瘤微环境响应的磁共振成像性能以及杀死肿瘤细胞......

合肥研究院等设计出肿瘤微环境响应的复合纳米材料

近日,中国科学院合肥物质科学研究院智能机械研究所研究员吴正岩团队,联合山东滨州医学院教授张桂龙和魏鹏飞,设计出一种核壳结构铜基纳米复合材料。该复合材料具有肿瘤微环境响应的磁共振成像性能以及杀死肿瘤细胞......

利用纳米聚焦X射线探针揭示CuAg串联催化剂在电化学CO2还原中的协同效应

01【导读】将二氧化碳气体捕获后通过电催化CO2还原反应(eCO2RR)转化为燃料、合成气或酒精、可再生电力等增值产品,是建立可持续循环经济和减少人为二氧化碳排放的最具吸引力的途径之一。对于具有成本要......

衡昇质谱与四川大学分析测试中心共建质谱实验室

2023年12月11日,衡昇质谱(北京)仪器有限公司宣布与四川大学分析测试中心(以下简称“川大分测中心”)共建质谱实验室。双方将依托该共建实验室,深耕元素标记与单纳米颗粒领域研究,力争取得更多科研成果......

激光粒度仪:实现高精度、高重复性的粒度测试

粒度测试可以评估药物的溶出度和吸收度。减小药物粒度有助于提升药物的溶出度,从而影响药物的疗效。同时,粒度范围未得到合理控制,可能导致批次间体内溶出度和吸收度的不一致,血药浓度波动大,可能导致不适或安全......

3800万!同济大学纳米级二次离子质谱仪项目公开招标

同济大学海洋与地球科学学院纳米级二次离子质谱仪(Nano-SIMS)采购项目(招标编号:1069-234Z20233753)上海中世建设咨询有限公司受招标人委托对下列产品及服务进行国际公开竞争性招标,......

Nature系列综述:mRNA纳米医学新时代

自20世纪90年代初以来,遗传学(Genetics)和纳米医学(Nanomedicine)的交叉已经在临床中找到了一席之地,并成为了过去十年来的游戏规则改变者之一,通过快速开发急需的治疗平台,在对抗从......

Nature子刊!国仪量子EPR助力纳米自旋传感器研究

基于量子特性,电子自旋传感器具有高灵敏度,可以广泛应用于探测各种物理化学性质,如电场、磁场、分子或蛋白质动力学以及核或其他粒子等。这些独特的优势和潜在应用场景,使基于自旋的传感器成为当前热点的研究方向......

理性化设计的mRNA纳米疫苗可增强肿瘤免疫治疗效果

中国科学院上海药物所李亚平研究员、郑明月研究员和上海交通大学医学院王当歌研究员在NationalScienceReview期刊发表了题为:STINGagonist-boostedmRNAimmuniz......

全新的纳米载体靶向效率的高精度可视化评估方法

近日,临港实验室殷宪振团队与中国科学院上海药物研究所张继稳团队合作,在ScienceAdvances期刊发表了题为:Cross-scaletracingofnanoparticlesandtumors......