Antpedia LOGO WIKI资讯

纳米二次离子质谱技术在微生物生态学研究中的应用

纳米二次离子质谱技术(NanoSIMS)在 微生物生态学研究中的应用氮(N)、碳(C)、硫(S)等生命元素的生物地球化学循环过程主要由微生物所驱动。 耦合分析自然环境中 微生物遗传多样性与其代谢多样性是当今微生物生态学研究的难点和热点。 自然环境中的微生物多样性极 为丰富,每吨土壤中的微生物类群可高达 400 万种,海洋中的微生物类群也超过 200 万种 。 实验室富集分 离的传统纯培养方法对微生物生理生态功能的认识做出了巨大贡献,但截止到 2003 年 7 月,全球范围内仅分 离培养出 4800 种细菌 ,这极大地限制了人们对微生物功能多样性的认识。 过去几十年里,人们通过从环境 样品中提取微生物 DNA 直接进行聚合酶链式反应(PCR),并利用 PCR 产物构建克隆文库并进行测序分析, 发现了大量的未知序列。 通过将这些未知序列与已知的分离培养微生物序列进行比对,从而推测这些未培养 微生物的可能代谢类型,成为......阅读全文

纳米二次离子质谱技术在 微生物生态学研究中的应用

纳米二次离子质谱技术(NanoSIMS)在 微生物生态学研究中的应用氮(N)、碳(C)、硫(S)等生命元素的生物地球化学循环过程主要由微生物所驱动。 耦合分析自然环境中 微生物遗传多样性与其代谢多样性是当今微生物生态学研究的难点和热点。 自然环境中的微生物多样性极 为丰富,每吨土壤中的微生物类

二次离子质谱技术

海洋有机地球化学检测方法二次离子质谱技术简述 摘要:海洋有机地球化学是通过研究与还原性碳相关的物质来揭示海洋生态系的 结构、功能与演化的一门科学。由于其中的有机组分通常以痕量、复杂的混合物 形式存在,且是不同年龄、不同来源、不同反应历史生源物质的集成产物,所以 总体分析困难较大。目前主要是从整体水平

二次离子质谱技术的分析和应用

  二次离子质谱是一种具有超高分辨率和灵敏度的固体表面分析技术。它可以分析氢元素到铀元素在内的所有元素和同位素,还可以得到固体表面官能团和分子结构等信息。SIMS可以分为静态SIMS(SSIMS)和动态SIMS(DSIMS)两种类型,通过不同扫描类型,得到二次离子质谱图、化学成像、动态深度剖析曲线等

质谱技术在中草药研究中的应用

敞开式离子化质谱(ambient ionization mass spectrometry,AIMS)是近年来兴起的一种无需(或稍许)样品前处理步骤,在敞开的大气环境下实现离子化的质谱分析技术。近年来,各种AIMS技术的研制与应用成为质谱领域备受关注的焦点之一。本工作综述了AIMS技术在中草

质谱流式技术在TIL研究中的应用

免疫细胞经常会出现在肿瘤组织中。它们也被称为肿瘤浸润性白细胞(Tumor Infiltrating Leukocyte)。这些细胞组成复杂、多变,在肿瘤发生过程中发挥着巨大的作用。目前已经成为了肿瘤免疫治疗领域研究的热点。由于免疫细胞的异质性,需要对其进行单细胞分析才能获得真实、全面的信息。单细胞测

离子及在质谱解析中的应用

1,分子离子分子经过电子轰击,失去一个价电子形成带正电荷的离子称为分子离子或母离子,质谱图中相应的峰称之为分子离子峰或母离子峰M+。分子离子峰一般位于质荷比最高的位置。约有75%的有机化合物产生的分子离子峰,判断分子离子峰有如下原则:(1)稳定性规律  可预见分子离子峰的强弱,需预先了解化合物结构。

质谱技术在临床中的应用

来自SDi的最新报告指出,未来五年临床质谱市场将以7.6%的速度增长。根据美国临床实验室协会的数据,美国临床实验室每年对血液、尿液和其他患者样品检测次数超过70亿次。免疫分析一直是临床诊断中应用最广泛的技术,但出于对检测结果精准性等需求,越来越多的实验室开始将质谱作为首选的检测工具。另外,相比于测序

质谱技术在临床中的应用

来自SDi的最新报告指出,未来五年临床质谱市场将以7.6%的速度增长。根据美国临床实验室协会的数据,美国临床实验室每年对血液、尿液和其他患者样品检测次数超过70亿次。免疫分析一直是临床诊断中应用最广泛的技术,但出于对检测结果精准性等需求,越来越多的实验室开始将质谱作为首选的检测工具。另外,相比于测序

DGGE技术在微生物生态学中的应用

  在自然界中存在大量丰富的微生物资源,但目前被人们所培养利用的仅仅占1%~10%,还有大量的微生物没有被人们所了解和利用。随着基因组学在生物技术领域的不断发展,微生物基因组学的研究凭借基因组研究(TIGR)所利用鸟枪法成功地对流感嗜血菌(Haem ophilus influenzae)的全基因组序

DGGE技术在微生物生态学中的应用

在自然界中存在大量丰富的微生物资源,但目前被人们所培养利用的仅仅占1%~10%,还有大量的微生物没有被人们所了解和利用。随着基因组学在生物技术领域的不断发展,微生物基因组学的研究凭借基因组研究(TIGR)所利用鸟枪法成功地对流感嗜血菌(Haem ophilus influenzae)的全基因组序列的