CRE显色培养基在碳青霉烯耐药机制筛选的应用

碳青霉烯耐药机制筛选新方法:CRE显色培养基肠杆菌科细菌是临床中最常见的细菌之一。碳青霉烯类抗生素作为广谱的抗生素,为治疗多药耐药的铜绿假单胞菌、鲍曼不动杆菌和产超广谱β-内酰胺酶[ESBLs]及AmpC酶的肠杆菌科细菌的首选药物,有时甚至成为唯一可用的有效药物。碳青霉烯类耐药肠杆菌科细菌[Carbapenem-resistant Enterobacteriaceae,CRE]的出现限制了该药对某些危重感染患者的应用,导致CRE感染的相关病死率升高[1]。CRE的出现及流行已是抗生素治疗及感染控制的一大难题。 CRE的流行病学分析[2] 根据Ambler分类[3],主要流行的碳青霉烯酶可分成3类,分别为A类的KPC、B类的NDM和D类的OXA-48。CRE的流行率以及流行的碳青霉烯酶种类均高度依赖于地理区域,但在各地CRE中肺炎克雷伯菌的流行率几乎都是最高的。除印度次大陆曾发生产NDM菌株引起的社区感染外......阅读全文

CRE显色培养基在碳青霉烯耐药机制筛选的应用

碳青霉烯耐药机制筛选新方法:CRE显色培养基肠杆菌科细菌是临床中最常见的细菌之一。碳青霉烯类抗生素作为广谱的抗生素,为治疗多药耐药的铜绿假单胞菌、鲍曼不动杆菌和产超广谱β-内酰胺酶[ESBLs]及AmpC酶的肠杆菌科细菌的首选药物,有时甚至成为唯一可用的有效药物。碳青霉烯类耐药肠杆菌科细菌[Carb

碳青霉烯耐药肺炎克雷伯菌

流行趋势     碳青霉烯类药物曾是抵抗携带超广谱β-内酰胺酶肺炎克雷伯菌的最锐利武器,随着碳青霉烯类药物的广泛使用,肺炎克雷伯菌对碳青霉烯类药物的耐药率持续上升,在全球范围内广泛流行,中国CHINET细菌耐药性监测显示碳青霉烯药物对肺炎克雷伯菌耐药率从2009年2%至2013年超过10%,

碳青霉烯类抗生素耐药机制

碳青霉烯类抗生素一种非典型β-内酰胺类抗生素,具有抗菌谱广、抗菌活性强以及对β-内酰胺酶稳定以及毒性低等特点,对控制耐药菌、产酶菌感染及免疫缺陷者感染发挥着重要作用。其结构与青霉素类的青霉环相似,不同之处在于噻唑环上的硫原子为碳所替代,且C2与C3之间存在不饱和双键;另外,其6位羟乙基侧链为反式构象

碳青霉烯类抗生素耐药机制介绍

碳青霉烯类抗生素一种非典型β-内酰胺类抗生素,具有抗菌谱广、抗菌活性强以及对β-内酰胺酶稳定以及毒性低等特点,对控制耐药菌、产酶菌感染及免疫缺陷者感染发挥着重要作用。其结构与青霉素类的青霉环相似,不同之处在于噻唑环上的硫原子为碳所替代,且C2与C3之间存在不饱和双键;另外,其6位羟乙基侧链为反式构象

碳青霉烯类的耐药性及产生机制

  新的抗菌药物出现,总是伴随着细菌耐药性的产生,虽然刚开始使用时,细菌对碳青霉烯类的耐药性相当低,对常见病原菌的敏感率相当高,但碳青霉烯类与其他β-内酰胺类一样,在临床应用后即出现耐药菌株。亚胺培南在临床上已应用多年,对其耐药的菌株有:黄单孢菌、粪肠球菌和耐甲氧青霉素葡萄球菌。对亚胺培南耐药的绿脓

CRE耐药基因型快速检测和临床用药指导

碳青霉烯类耐药肠杆菌目细菌(Carbapenem-resistant Enterobacterales,CRE)近年来检出率呈快速上升趋势,其所致感染病死率高,临床治疗上面临着无药可用的威胁。由于不同种类的抗菌药物对产生不同碳青霉烯酶菌株的体外抗菌活性不同,准确、快速地判定CRE产生的碳青霉烯酶

碳青霉烯类抗生素的耐药性及产生机制

  新的抗菌药物出现,总是伴随着细菌耐药性的产生,虽然刚开始使用时,细菌对碳青霉烯类的耐药性相当低,对常见病原菌的敏感率相当高,但碳青霉烯类与其他β-内酰胺类一样,在临床应用后即出现耐药菌株。亚胺培南在临床上已应用多年,对其耐药的菌株有:黄单孢菌、粪肠球菌和耐甲氧青霉素葡萄球菌。对亚胺培南耐药的绿脓

简述碳青霉烯类的作用机制

  作用方式 :碳青霉烯类抗生素作用方式都是抑制胞壁粘肽合成酶,即青霉素结合蛋白(PBPs),从而阻碍细胞壁粘肽合成,使细菌胞壁缺损,菌体膨胀致使细菌胞浆渗透压改变和细胞溶解而杀灭细菌。哺乳动物无细胞壁,不受此类药物的影响,因而本类药具有对细菌的选择性杀菌作用,对宿主毒性小。近十多年来已证实细菌胞浆

什么是产ESBLs菌

多重耐药菌主要是指对临床使用的三类或三类以上抗菌药物同时呈现耐药的细菌。常见多重耐药菌包括耐甲氧西林金黄色葡萄球菌(mrsa)、耐万古霉素肠球菌(vre)、产超广谱β内酰胺酶(esbls)细菌、耐碳青霉烯类抗菌药物肠杆菌科细菌(cre)(如产i型新德里金属b一内酰胺酶[ndm一1]或产碳青霉烯酶[k

什么是产ESBLs菌

多重耐药菌主要是指对临床使用的三类或三类以上抗菌药物同时呈现耐药的细菌。常见多重耐药菌包括耐甲氧西林金黄色葡萄球菌(mrsa)、耐万古霉素肠球菌(vre)、产超广谱β内酰胺酶(esbls)细菌、耐碳青霉烯类抗菌药物肠杆菌科细菌(cre)(如产i型新德里金属b一内酰胺酶[ndm一1]或产碳青霉烯酶[k

香港罕见抗药恶菌个案升-抗药比率增2.8倍

  "抗药恶菌"横行。香港医管局于去年锁定的7种目标"恶菌"中,2种出现了上升趋势,包括杀伤力较强的"抗碳青霉烯肠道杆菌"(CRE),抗药比率由前年的0.05%升至去年的0.19%,升幅达2.8倍。医管局表示,去年10%"重炮抗生素"被不恰当使用,强调对抗恶菌要从防止交叉感染做起,并会主动筛选斑危带

多向耐药(pdr)和多药耐药(mdr)的区别

MDR(multi-drug resistant)——多重耐药细菌对常用抗菌药物主要分类的3类或以上耐药。PDR(pandrug resistant)——全耐药细菌对所有分类的常用抗菌药物全部耐药。具有上述性质的细菌,都可以称之为''超级细菌''(superbacte

多向耐药(pdr)和多药耐药(mdr)的区别

MDR(multi-drug resistant)——多重耐药细菌对常用抗菌药物主要分类的3类或以上耐药。PDR(pandrug resistant)——全耐药细菌对所有分类的常用抗菌药物全部耐药。具有上述性质的细菌,都可以称之为''超级细菌''(superbacte

美国医学机构发现200多种罕见抗生素耐药基因

  美国疾病控制与预防中心(CDC)3日发布《生命征象》(Vital Signs)报告称,在一项“噩梦细菌”的测试中,该机构发现200多种罕见的抗生素耐药基因。  据美国有线电视新闻网消息,美国疾病控制与预防中心3日发布报告指出,该机构于2017年在美国的医院和疗养院中抽取5776株“噩梦细菌”作检

碳青霉烯——需要特殊使用的抗生素

  如果将抗生素分为三六九等,那碳青霉烯类(培南类)应该是最高等,屹立于金字塔尖。其对各种革兰阳性菌、革兰阴性菌和多数厌氧菌具强大抗菌活性,对临床常见的β-内酰胺酶高度稳定。      自1979年研制成功以来,碳青霉烯类是抗感染用药中最重要的品种,俗称“抗生素的最后一道防线”,当其他抗菌药

概述碳青霉烯类的临床应用

  碳青霉烯类抗生素主要使用于以下三类病人:  1、重症感染包括院内获得性肺炎、败血症、腹膜炎以及中性粒细胞减少的发热病人,在病原体明确前,为了尽量覆盖可能的病原菌,常作为经验性治疗的首选药物,病原明确后可继续使用,也可“降阶梯治疗”。  2、多重耐药菌感染的治疗,如产ESBLs菌株、产AmpC酶菌

HAT培养基在杂交瘤细胞筛选的应用

1964年Littlefield首先发明了HAT(H-Hypoxanthine次黄嘌呤,A-Aminopterin氨基蝶呤,T--Thymidine 胸腺嘧啶核苷)培养基的选择培养。 HAT培养基是指含有次黄嘌呤(hypoxantin)、氨基蝶呤(aminopterin)和胸腺嘧啶脱氧核苷(thym

“超级细菌”抵抗所有26种抗生素-什么将是人类救星

  抗微生物药物耐药性威胁对全球公共卫生构成越来越严重的威胁。近日,来自美国内华达州的公共卫生官员公告了一名70岁妇女的病例事件,她在去年9月份死于不可治愈的细菌感染。检测结果显示,在她的身体系统中密布了大量所谓的“超级细菌”,经26种不同的抗生素治疗后仍未有效果。  虽然这不是第一次有人在美国已经

碳青霉烯类抗生素耐药检测的介绍

  碳青霉烯酶是具有水解碳青霉烯类抗菌药物的β-内酰胺酶,主要分布于β-内酰胺酶A、B、D类中。产酶细菌对这类抗生素耐药。因此,检测碳青霉烯酶可判定该菌对碳青霉烯类抗生素的耐药性。方法有EDTA协同试验、改良Hodge试验。

简述青霉素类抗生素的耐药机制

  (1)细菌产生β-内酰胺酶(青霉素酶、头孢菌素酶)破坏β内酰胺环.  (2)耐药菌产生新的PBPs、对青霉素的亲和力降低。

显色培养基

显色培养基是一类利用微生物自身代谢产生的酶与相应显色底物反应显色的原理来检测微生物的新型培养基。这些相应的显示底物是由产色基团和微生物部分可代谢物质组成,在特异性酶的作用下,游离出产色基团显示一定颜色,直接观察菌落颜色即可对菌种作出鉴定。优点:将菌株分离,鉴定结合在一起,无需对菌株进行分离纯化和进一

质粒介导的超广谱β内酰胺酶的耐药性问题及检验

近年来,耐药性的问题正日益成为全球医药界共同关注的焦点,细菌对抗生素耐药的机制包括:(1)细胞膜通透性的改变,使抗生素不能,或很少透入细菌体内到达作用靶位;(2)灭活酶或钝化酶的产生,如产生β内酰胺酶,使抗生素失效;(3)与抗生素结合靶位(亲和力)的改变,使抗生素的作用下降;(4)其他,如主动外排系

头孢吡肟/VNRX5133抗生素组合治疗尿路感染进入III期临床

  VenatoRx是一家私营制药公司,致力于发现和开发新型抗感染药物,以治疗多药耐药细菌感染和难以治疗的病毒感染。近日,该公司宣布,已启动头孢吡肟(cefepime)/VNRX-5133治疗复杂尿路感染(cUTI)III期临床研究的患者入组。  VNRX-5133是一种可注射的-内β酰胺酶抑制剂(

细菌耐药性变化

    抗菌药物的作用靶位随时间而变化,其结果是耐药性增加。使用一种抗菌药物治疗某一细菌感染,会对其他细菌、肠道菌群及其他抗菌药物造成附加损害,影响各种抗菌药物将来用药时的临床疗效。    当前细菌对抗菌药物的耐药趋势    革兰阴性(G-)菌的耐药问题必须受到关注。G-菌是当前医院获得性感染的

碳青霉烯类抗生素耐药检测的临床意义

  研究细菌对碳青霉烯类抗菌药物耐药性,为临床合理使用抗生素提供依据

显色培养基原理

  显色培养检测基本原理:利用不同种属细菌代谢所产生的酶的特异性,在培养基中加入相应的特异性酶底物和抑制剂,当具有某特异酶的细菌与酶底物作用时,使显色基团游离出来附着于菌落上,形成颜色独特的菌落。根据菌落的颜色直接对菌属(种)作出鉴定。  快速、简便、节省时间-大多数显色培养基只需在样品增菌后,分离

鲍曼不动杆菌耐药机制

(一)对ß-内酰胺类抗生素的耐药机制    1)质粒介导或染色体突变使细菌产生ß-内酰胺酶通过水解或非水解方式破坏ß-内酰胺环使抗生素失活这是大多数病菌对ß-内酰胺类抗生素产生耐药的主要机制。金属酶属Ambler B类ß-内酰胺酶属于Bush功能分类3群。根据金属ß-内酰胺酶的底物特

概述碳青霉烯类抗生素的作用机制

  作用方式 :碳青霉烯类抗生素作用方式都是抑制胞壁粘肽合成酶,即青霉素结合蛋白(PBPs),从而阻碍细胞壁粘肽合成,使细菌胞壁缺损,菌体膨胀致使细菌胞浆渗透压改变和细胞溶解而杀灭细菌。哺乳动物无细胞壁,不受此类药物的影响,因而本类药具有对细菌的选择性杀菌作用,对宿主毒性小。近十多年来已证实细菌胞浆

手把手教你开展多重耐药菌的目标监测(一)

01  明确监测的对象根据《国家卫生计生委办公厅关于印发麻醉等6个专业质控指标(2015年版)的通知》,多重耐药菌目标监测种类分别为耐碳青霉烯类鲍曼不动杆菌(CRABA)、耐碳青霉烯类铜绿假单胞菌(CRPAE)、耐碳青霉烯类肠杆菌(CRE)、耐甲氧西林金黄色葡萄球菌(MRSA)、耐万古霉素肠球菌(V

应对“超级细菌”创新型抗生素

   “细菌耐药问题已经构成了全球的重大公共健康威胁,我国社区环境和医院环境中,由耐药革兰阴性菌引起的感染在近几年持续增多,特别是对于治疗选择有限的‘超级细菌’,包括碳青霉烯类耐药肠杆菌科细菌(CRE)在内的耐药菌引起的感染发生率不断升高,临床迫切需要新的治疗选择。”辉瑞生物制药集团中国区总经理吴琨