Antpedia LOGO WIKI资讯

调控玉米性状可变剪接“火”起来

可变剪接,这个早在上世纪就被提出的概念,在近几年的研究中,又“火”了起来。科学家们发现,可变剪接不仅丰富蛋白质组多样性,还在生物体内起着重要的调控作用。 可变剪接是什么?这项研究有了什么新发现?是怎样得出来的?实验中的难点是什么?对之后的研究有怎样的借鉴意义?科技日报就此采访了该研究团队。 玉米变异丰富,比人猿间差异还大 可变剪接,又称选择性剪接。其过程是未成熟的mRNA(信使RNA)分子通过选择不同的剪切位点,切除掉其部分片段,将剩余片段以多样化组合方式重新连接在一起,形成多种不同结构的成熟mRNA分子。 “简单来说,就是一个前体mRNA分子可以经过不同的加工方式,形成不同的成熟mRNA产物。”该论文第一作者、中国农业大学玉米改良中心陈秋月博士解释道,这就像用剪刀去剪绳子、再把剪下来的绳段重新打结一样,剪哪里、剪几刀、留下哪些绳段、以什么顺序打结,这些都会产生不同的新绳。 成熟mRNA分子可翻译表达各种不同的蛋白......阅读全文

t-NAS(转录组新可变剪接位点的发现)

本公司采用自主研发与成熟开源软件相结合的方式构建了专业高效的生物信息分析流程,对您获得的海量RNA-seq序列的质量、特征等重要信息进行图形可视化;发现您样品中的新可变剪接事件,揭示出的重要科学问题进行中肯分析;让您快速“发现”所关注生物学问题,医学问题和农业问题的答案。 我们的流程:1.

t-RAS(转录组可变剪接调控深度分析)

本公司采用自主研发与成熟开源软件相结合的方式构建了专业高效的生物信息分析流程,对您获得的海量RNA-seq序列的质量、特征等重要信息进行图形可视化;根据对照和实验组,系统分析您样品中所蕴藏的可变剪接调控规律,中肯分析所揭示出的重要科学规律;让您快速“发现”所关注的生物学,医学和农业问题的答案。&nb

NCB | 这一次,FTO是snRNA的m6Am去甲基化酶

  RNA的m6A修饰是RNA表观遗传学研究领域的大热门,近年来相关研究多次登上高分杂志。从胚胎发育到疾病进程,从RNA的稳定性到可变剪接和翻译效率,m6A的功能几乎无处不在(图1)。图1  由于m6A是一种RNA修饰,若想知道它在某一体系(发育阶段或癌症)中的作用,目前大部分研究都是基于影响m6A

Nature Genetics | 何川团队绘制淋巴母细胞样细胞系QTL图谱

  N6-甲基腺苷(m6A)在调节信使RNA加工中起重要作用。尽管在该领域取得了快速进展,但对m6A修饰的遗传决定因素及其在常见疾病中的作用了解甚少。  2020年6月29日,芝加哥大学何川等团队在Nature Genetics 在线发表题为“Genetic analyses support the

转录组的重编写:RNA编辑

  前 言   基因的功能探索是生命科学研究的永恒主题。近几年以CRISPR-Cas9技术的发展让直接在高等生物体内进行基因的功能研究成为可能。但除了DNA之外, DNA的转录产物--RNA在生命活动中也发挥着极其重要的作用,且与癌症等多种疾病的发生密切相关。因此,对RNA进行功能研究和错误RNA

转录组的重编写:RNA编辑

前 言基因的功能探索是生命科学研究的永恒主题。近几年以CRISPR-Cas9技术的发展让直接在高等生物体内进行基因的功能研究成为可能。但除了DNA之外, DNA的转录产物--RNA在生命活动中也发挥着极其重要的作用,且与癌症等多种疾病的发生密切相关。因此,对RNA进行功能研究和错误RNA的纠

转录组的重编写:RNA编辑

  基因的功能探索是生命科学研究的永恒主题。近几年以CRISPR-Cas9技术的发展让直接在高等生物体内进行基因的功能研究成为可能。但除了DNA之外, DNA的转录产物--RNA在生命活动中也发挥着极其重要的作用,且与癌症等多种疾病的发生密切相关。因此,对RNA进行功能研究和错误RNA的纠正,成为了

北京生科院在环形RNA研究领域取得新进展

  6月28日,国际学术期刊Nature Communications 在线发表了中国科学院北京生命科学研究院计算基因组实验室赵方庆团队题为Comprehensive identification of internal structure and alternative splicing even

研究揭示甘蔗花叶病毒干扰RNA剪接促进侵染

近日,中国农业大学植物保护学院教授周涛课题组在甘蔗花叶病毒(SCMV)相关研究上获得了新进展。研究发现,SCMV侵染改变了玉米八氢番茄红素合成酶基因(ZmPSY1)的转录本可变剪接模式,因此促进病毒侵染。相关成果发表于《植物生理学报》。 SCMV是我国和非洲玉米生产上的一种主要病原,广泛分布于世

核酸序列分析实验

实验方法原理针对核酸序列的分析就是在核酸序列中寻找基因,找出基因的位置和功能位点的位置,以及标记已知的序列模式等过程。在此过程中,确认一段 DNA 序列是一个基因需要有多个证据的支持。一般而言,在重复片段频繁出现的区域里,基因编码区和调控区不太可能出现;如果某段 DNA 片段的假想产物与某个已知的蛋

核酸序列分析

【实验目的】1、 掌握已知或未知序列接受号的核酸序列检索的基本步骤;2、 掌握使用BioEdit软件进行核酸序列的基本分析;3、 熟悉基于核酸序列比对分析的真核基因结构分析(内含子/外显子分析);4、 了解基因的电子表达谱分析。【实验原理】针对核酸序列的分析就

2017年不能错过的长非编码RNA研究推荐

  2017年即将过去,这一年的非编码RNA研究取得了很多重磅级成果。与早先的主要是在不同类型的疾病(癌症)中大规模鉴定非编码RNA,今年的研究是对非编码RNA机制的更深入探索,给我们展现了作用方式更丰富多彩的非编码RNA世界。图片来源于网络  一 长非编码RNA(lncRNA)  长非编码RNA是

单碱基编辑系统在植物中建立mRNA剪接操控新方法

  mRNA前体的剪接是高等生物体内基因转录后加工的重要过程,传统mRNA的剪接遵循“GU-AG”法则,即主要剪接体包含三个保守的剪接位点,即位于内含子5’端的“GU”、3’端的“AG”和靠近3’端的分支点“A”。剪接体通过选择一种或多种剪接位点可将mRNA前体加工为一种或多种成熟的mRNA,即组成

刘默芳组:LARP7介导U6修饰及在生精细胞mRNA精准剪接功能

  在较高等的真核生物中,大部分基因都含有内含子,在转录完成后需经过剪接(splicing)从mRNA前体移除内含子,以产生成熟、有翻译活性的mRNA,这个过程由剪接体(spliceosome)催化完成。经典的剪接体包括五种snRNA(small nuclear RNA),即U1、U2、U4、U5和

重磅 | 3篇Nature背靠背发表,科学家发现新型的致癌机制

  在所有真核细胞中,基因表达分三步进行,分别由RNA聚合酶(RNA polymerase)、剪接体(Spliceosome)、和核糖体(Ribosome)执行。首先,储存在遗传物质DNA序列中的遗传信息必须通过RNA聚合酶的作用转变成前体信使RNA (precursor messenger RNA

常兴研究组发现RNA剪接基因编辑的新方法

  2018年10月5日,国际知名学术期刊《分子细胞》在线发表了中国科学院上海生命科学研究院(营养与健康研究院)常兴研究组题为“Genetic modulation of RNA splicing with a CRISPR-guided cytidine deaminase”的最新研究成果。证明可

杨力受邀发表MolecularCell综述解析可变剪接

中国科学院上海生命科学研究院计算生物学研究所杨力研究组受邀在《分子细胞》(Molecular Cell)发表了题为RNA structure switches RBP binding 的专评文章,对该刊同期发表的一项题为RNA sequence context effects measured in

2019中国生命科学领域CNS盘点:曹雪涛 颜宁 施一公上榜

  截至2019年12月23日,中国学者在Cell,Nature及Science在线发表了107篇文章(2019年的Cell ,Nature 及Science 已经全部更新),iNature团队对于这些文章做了系统的总结:  按杂志来划分:Cell 发表了31篇,Nature 发表了44篇,Scie

内含子的重要功能:帮助酵母应对压力下的生存

  内含子(intron)的存在,是真核细胞蛋白质编码基因与原核细胞最大的区别。在真核细胞基因表达的过程中,需要经过RNA剪接反应将其去除。一般来说,内含子的长度远比编码蛋白的外显子序列长,并且执行剪接反应的酶——剪接体高度复杂,由170多个相关蛋白组成。剪接反应需要高度精准,移码错位一个碱基都会导

长链非编码RNA: 从科研到临床

   长链非编码RNA (LncRNA)是一类真核生物中长度大于200 nt的非编码RNA分子;根据其与邻近基因的位置可以分为反义lncRNA、增强子lncRNA、基因间lncRNA、双向lncRNA、和内含子lncRNA;它具有多种作用机制,比如在细胞核中作为分子支架、协助可变剪接、调节染色体结构

生化与细胞所研究发现转录中介体复合物的新功能

  《细胞》子刊《分子细胞》(Molecular Cell)杂志于1月19日在线发表了中国科学院上海生科院生化与细胞所王纲研究组、惠静毅研究组和美国新泽西医科大学的田斌研究组合作的一项最新研究成果。该工作发现了中介体复合物(Mediator Complex)在调控mRNA可变加工中的重要作

pre-mRNA中存在的修饰及其对剪接影响

  2018年10月7日 讯 /生物谷BIOON/--日前,作为“诺贝尔奖风向标”的拉斯克奖——拉斯克·科什兰医学特殊成就奖颁给了Joan Argetsinger Steitz教授(致敬Joan Steitz!2018年拉斯克特别成就奖获得者),以表彰她在生物医学领域,尤其是RNA生物学领域中所发挥

蛋白质组学在植物科学研究中的应用

1 植物群体遗传蛋白质组学 1.l 遗传多样性蛋白质研究基于基因组学的一些遗传标记,如RAPD(Random Amplified Polymorphic DNA)、RFLP(Restriction Fragment Length Polymorphism)、SSR(Simple Sequen

Cell揭示新型细胞质控机制

  mRNA是DNA和蛋白质生产之间的桥梁。当mRNA将DNA的遗传信息带出细胞核时,需要去除非编码片段,将剩下的片段拼接在一起。这个剪切过程是非常关键的,至少15%的人类疾病与剪切错误有关,包括一些癌症和神经退行性疾病。  芝加哥大学的科学家们发现,两种RNA解旋酶在剪切的质量控制中起到了关键作用

核仁小RNA(snoRNAs)的功能及其在癌症研究中的作用介绍

  核仁小RNA(snoRNAs)是一类中等长度的非编码小RNA,它们的长度在60-300nt不等,能与核仁核糖核蛋白结合形成snoRNPs 复合物[1]。在脊椎动物中编码核仁小RNA的基因主要存在于蛋白编码基因或非蛋白编码基因的内含子区域,并且经过进一步的转录后加工处理形成成熟的核仁小RNA[2]

Nat Rev Genetics | 环状RNA的合成与功能

  环状RNA(circular RNA,circRNA)是一种新兴的内源性非编码RNA(noncoding RNA,ncRNA),是继microRNA (miRNA)以及long noncoding RNA (IncRNA)后非编码RNA家族中极具研究潜力的新成员。越来越多的研究表明,环状RNA具

浙江大学Nature子刊发表研究新成果

  浙江大学生命科学学院的研究团队最近在Nature Communications杂志上发表了可变剪接研究的新成果,可以帮助人们进一步了解剪接异构体的惊人多样性。文章的通讯作者是浙江大学生命科学学院的金勇丰(Yongfeng Jin)教授。  可变剪接能从单个基因组位点产生数量惊人的异构体,果蝇Ds

研究揭示LARP7在生精细胞mRNA精准剪接和精子发生中的功能

  2月3日,国际学术期刊Molecular Cell 在线发表了中国科学院分子细胞科学卓越创新中心/生物化学与细胞生物学研究所刘默芳研究组的最新研究成果“LARP7-Mediated U6 snRNA Modification Ensures Splicing Fidelity and Sperm

清华施一公院士Science同期发表两篇新文章

  清华大学的施一公(Yigong Shi)教授是国际著名的结构生物学家,在细胞凋亡、大分子机器、膜蛋白研究领域占据国际领先地位。曾荣获国际赛克勒生物物理学奖、香港求是基金会杰出科 学家奖、谈家桢生命科学终身成就奖、瑞典皇家科学院爱明诺夫奖等多个国内外大奖。2008年施一公放弃国外的优厚条件选择回国

长链非编码RNA: 从科研到临床(一)

概述长链非编码RNA (LncRNA)是一类真核生物中长度大于200 nt的非编码RNA分子;根据其与邻近基因的位置可以分为反义lncRNA、增强子lncRNA、基因间lncRNA、双向lncRNA、和内含子lncRNA;它具有多种作用机制,比如在细胞核中作为分子支架、协助可变剪接、调