Antpedia LOGO WIKI资讯

PNAS:主动运输颠覆性新发现

麻省大学Amherst分校的生物物理学家指出,此前人们研究主动运输的模型过于简单,无法反映活细胞中拥挤的主动运输,而他们使用新技术对运输系统进行了改进,研究结果推翻了人们对主动运输老观点。 许多活细胞的主动转运系统在微管组成的高速轨道上运行,驱动蛋白负责将货物快速运输到目的地。研究人员指出,尽管细胞中的交通运输非常繁忙,但主动运输系统仍然能够有效工作,既不会发生事故也不会出现交通堵塞。 麻省大学Amherst分校的生物物理学家们认为以往的主动运输模型过于简单,无法贴切描述活细胞中密集的动态过程,他们利用新技术和特制显微镜对此进行了改进。在神经元等细胞中主动运输对于细胞存活至关重要,而这项由生物物理学家Jennifer Ross领导的新研究,大大增进了人们对主动运输平稳进行的了解。该文章提前发表在美国国家科学院院刊PNAS杂志的网络版中。 以往主动运输研究的简单模型揭示了单个驱动蛋白的工作机制,包括载量对......阅读全文

量子点活细胞成像应用的实验方案

量子点(Quantum dot, QD)是一种新型荧光纳米材料,又称半导体纳米晶,呈近似球形,三维尺寸在2-10nm,具有明显的量子效应,其物理、光学、电学特性优于传统有机荧光染料,是新一代荧光标记探针的优质选择。Chan等将量子点与传统有机荧光染料进行了光学特性的比较,发现量子点的荧光亮度是传统荧

量子点活细胞成像应用的实验方案建议

   量子点(Quantum dot, QD)是一种新型荧光纳米材料,又称半导体纳米晶,呈近似球形,三维尺寸在2-10nm,具有明显的量子效应,其物理、光学、电学特性优于传统有机荧光染料,是新一代荧光标记探针的优质选择。    Chan等将量子点与传统有机荧光染料进行了光学特性的比较,发现量子点的

纳米片递送量子点技术用于活细胞标记微管骨架

量子点做为无机合成的纳米荧光探针,具有高荧光亮度和荧光稳定性,适合长时间观察和活体示踪。将量子点靶向递送入细胞浆,有助于细胞内蛋白瞬时相互作用研究,以及动态细胞学反应机制的长时程观察。目前量子点递送入细胞的方法主要分为两类:①协助递送策略:利用穿膜肽、多聚物载体、转染试剂等实现量子点的递送,但是需要

无标记活细胞成像系统助力量子点用于细胞死亡表征的...

   细胞死亡机制的研究一直是生命科学领域的研究热点。通常,细胞死亡(细胞凋亡、自噬、坏死)的检测需要间接的荧光标记配合不同检测方法。然而,这些方法无法实时监测细胞死亡过程中的内部状况,也无法同时鉴定毒性物质和细胞死亡过程。因此间接标记越来越难以满足细胞死亡过程实时监测的需求。量子点(quantum

量子点生物应用指南

量子点是尺寸在 1-100 纳米的半导体材料(包括Ⅱ-Ⅵ族,Ⅲ-Ⅴ族,Ⅳ族等),具有明显的量子效应。与传统的有机荧光染料相比,具有灵敏度高,稳定性好,荧光寿命长等优势。量子点的特殊的光学性质使得它在光化学、分子生物学、医药学等研究中有极大的应用前景。量子点最有前途的应用领域就是作为荧光探针应用于生物

量子点标记技术实现分子马达在活细胞的示踪

基于量子点的单分子荧光示踪技术,对于体外研究分子马达在细胞骨架上的行走模式具有重要意义。目前对于细胞内分子马达运动特性的研究,是通过对内吞体、黑素体等细胞器的示踪而间接实现的。这些细胞器通过分子马达运输,因此,对细胞器的运动监测可间接分析分子马达的运动特性。巴黎第六大学Giovanni Capp

活细胞成像显微镜

  活细胞成像显微镜是一种用于生物学领域的分析仪器,于2012年3月15日启用。  技术指标  固态光源SSI(含7条激发谱线),高精度电动载物台(X、Y:20nm,Z:5nm),CalSnapHQ2 CCD.EMCCD.湿控及CO2系统装置,自动对焦装置(焦距时间100ms,精度25nm)。10×

活细胞成像用哪种显微镜

活细胞成像可以选择共聚焦显微镜,共聚焦与传统显微镜的原理差别在于照明方式不同:传统显微镜是一次性照明整个视野中的样品,因此可以用眼睛直接观察或者用CCD获取图像,没有时间延迟;而共聚焦显微镜是逐点成像,无法用CCD获取图像,只能用探测器收集每个象素点的信号,再通过软件重构图像,有一定的时间延迟。共聚

量子点标记实现活细胞内单拷贝艾滋病毒基因的原位成像

  艾滋病毒基因组RNA逆转录为DNA,整合在宿主染色体内形成前病毒(HIV provirus),是根除艾滋病毒的最大障碍。在活细胞内对单拷贝或低拷贝的整合态HIV基因标记与成像,对前病毒的识别和切除具有重要意义,但一直是个难题。最近,中国科学院武汉病毒研究所研究员崔宗强与中国科学院生物物理研究所研

PNAS:主动运输颠覆性新发现

  麻省大学Amherst分校的生物物理学家指出,此前人们研究主动运输的模型过于简单,无法反映活细胞中拥挤的主动运输,而他们使用新技术对运输系统进行了改进,研究结果推翻了人们对主动运输老观点。   许多活细胞的主动转运系统在微管组成的高速轨道上运行,驱动蛋白负责将货物快速运输到目的地。研究人员指出