上海光谱十八周年“成人礼”携多款产品参加BCEIA2017

分析测试百科网讯 2017年10月10日,第十七届北京分析测试学术报告会暨展览会(BCEIA 2017)在北京国家会议中心召开。上海光谱仪器有限公司(以下简称“上海光谱”)携众多明星产品参加了本次盛会,而且还迎来了十八周年“成人礼”。上海光谱展台 上海光谱仪器有限公司总裁陈建钢为我们介绍了上海光谱的发展历程。上海光谱经过18年的不断探索前进,已经走在了行业的前沿,成为了领军企业。目前,上海光谱有可见分光光度计、紫外可见分光光度计、原子吸收光谱和快速溶剂萃取仪等多条产品线,其中原子吸收光谱是最主要最完整的产品线。上海光谱是国产分析仪器企业中,率先实现成批量向欧美发达国家出口原子吸收光谱仪的企业。 上海光谱在仪器可靠性方面下了很大的功夫,聘请了国际知名专家协助,同时得到了科技部的大力支持。从2007年开始,上海光谱就不断获得上海市科委的相关课题资助。后来,上海光谱还得到了国家重大科学仪器设备开发专项的资助。 上海光谱率先打......阅读全文

上海光谱发布国际首创交直流塞曼原子吸收

  2014年11月1日,值第十八届全国分子光谱学学术会议召开之际,会议协办单位上海光谱仪器有限公司举办交直流赛曼原子吸收光谱仪新产品发布会,吸引了近百位业内人士现场参与。  发布会现场上海光谱总经理 陈建钢先生  十二五重大仪器专项成果 解决光谱仪器关键部件研发  上

原子发射光谱、原子吸收光谱

  原子吸收光谱是原子发射光谱的逆过程。基态原子只能吸收频率为ν=(Eq-E0)/h的光,跃迁到高能态Eq。因此,原子吸收光谱的谱线也取决于元素的原子结构,每一种元素都有其特征的吸收光谱线。  原 子的电子从基态激发到最接近于基态的激发态,称为共振激发。当电子从共振激发态跃迁回基态时,称为共振跃迁。

原子吸收光谱和原子发射光谱区别

原子吸收光谱是原子发射光谱的逆过程。基态原子只能吸收频率为ν=(Eq-E0)/h的光,跃迁到高能态Eq。因此,原子吸收光谱的谱线也取决于元素的原子结构,每一种元素都有其特征的吸收光谱线。   原 子的电子从基态激发到最接近于基态的激发态,称为共振激发。当电子从共振激发态跃迁回基

原子吸收光谱和原子发射光谱区别

      原子吸收光谱是原子发射光谱的逆过程。基态原子只能吸收频率为ν=(Eq-E0)/h的光,跃迁到高能态Eq。因此,原子吸收光谱的谱线也取决于元素的原子结构,每一种元素都有其特征的吸收光谱线。  原子的电子从基态激发到最接近于基态的激发态,称为共振激发。当电子从共振激发态跃迁回基态时,称为共振

原子吸收光谱和原子发射光谱区别

原子吸收光谱和原子发射光谱区别如下:吸收光谱和发射光谱都是线谱,区别在于前者显示黑色线条,而发射光谱显示光谱中的彩色线条。发射光谱:给样品以能量,比如原子发射光谱,原子外层电子由基态到激发态,处于激发态电子不稳定,会以光辐射的形式是放出能量,而回到基态或较低的能级.得到线状光谱。吸收光谱:用一定波长

原子吸收光谱和原子发射光谱区别

  原子吸收光谱是原子发射光谱的逆过程。基态原子只能吸收频率为ν=(Eq-E0)/h的光,跃迁到高能态Eq。因此,原子吸收光谱的谱线也取决于元素的原子结构,每一种元素都有其特征的吸收光谱线。  原 子的电子从基态激发到最接近于基态的激发态,称为共振激发。当电子从共振激发态跃迁回基态时,称为共振跃迁。

火焰原子吸收光谱法与原子吸收光谱的区别

火焰是指原子化的方法,与之对应的还有石墨炉原子化法;原子吸收光谱是光源经原子化器后与元素对应谱线被吸收后再经分光系统分光色散后形成的光谱。

高端原子吸收光谱的追逐之路——访上海光谱陈建钢总经理

  2016年3月17日,从上海光谱仪器有限公司(以下简称:上海光谱)传来好消息:我国第一台在国内市场销售的高性能全自动火焰/石墨炉原子吸收光谱仪正式下线,并交付用户。作为上海光谱实施科技部十二五重大专项和上海市科委支撑项目取得的成果,该产品不仅标志着我国的高端大型仪器已经走向世界,开始与国际知名品

原子吸收光谱和原子发射光谱的异同

从本质上说都是经由原子的能级跃迁产生的。不同的是原子发射光谱研究的是待测元素激发的辐射强度,原子吸收光谱法是研究原子蒸气对光源共振线的吸收强度,是吸收光谱。原子荧光是研究待测元素受激发跃迁所发射的荧光强度,虽激发方式不同,仍属于发射光谱。因为原子荧光光谱法既有原子发射光谱和吸收的特点所以具有二者的优

原子吸收光谱和原子发射光谱的异同

从本质上说都是经由原子的能级跃迁产生的。不同的是原子发射光谱研究的是待测元素激发的辐射强度,原子吸收光谱法是研究原子蒸气对光源共振线的吸收强度,是吸收光谱。原子荧光是研究待测元素受激发跃迁所发射的荧光强度,虽激发方式不同,仍属于发射光谱。因为原子荧光光谱法既有原子发射光谱和吸收的特点所以具有二者的优

浅谈原子吸收光谱和ICP光谱

原子吸收光谱法和原子发射光谱法都属于原子光谱分析技术。不同之处在于原子发射光谱分析技术是通过测量被测元素的发射谱线的波长与强度进行定性与定量分析的一种原子光谱技术;而原子吸收光谱则是依据被测元素对锐线光源的吸收程度进行定量分析的一种原子光谱技术。下面对两种技术简单进行分别介绍。 第一部分  原子吸收

原子吸收光谱和ICP光谱比较

原子吸收光谱法和原子发射光谱法都属于原子光谱分析技术。不同之处在于原子发射光谱分析技术是通过测量被测元素的发射谱线的波长与强度进行定性与定量分析的一种原子光谱技术;而原子吸收光谱则是依据被测元素对锐线光源的吸收程度进行定量分析的一种原子光谱技术。下面对两种技术简单进行分别介绍。 第一部分  原子吸收

浅谈原子吸收光谱和ICP光谱

原子吸收光谱法和原子发射光谱法都属于原子光谱分析技术。不同之处在于原子发射光谱分析技术是通过测量被测元素的发射谱线的波长与强度进行定性与定量分析的一种原子光谱技术;而原子吸收光谱则是依据被测元素对锐线光源的吸收程度进行定量分析的一种原子光谱技术。下面对两种技术简单进行分别介绍。 第一部分  原子吸收

原子吸收光谱和ICP光谱比较

浅谈原子吸收光谱和ICP光谱   原子吸收光谱法和原子发射光谱法都属于原子光谱分析技术。不同之处在于原子发射光谱分析技术是通过测量被测元素的发射谱线的波长与强度进行定性与定量分析的一种原子光谱技术;而原子吸收光谱则是依据被测元素对锐线光源的吸收程度进行定量分析的一种原子光谱技术

原子吸收光谱和ICP光谱比较

  浅谈原子吸收光谱和ICP光谱  原子吸收光谱法和原子发射光谱法都属于原子光谱分析技术。不同之处在于原子发射光谱分析技术是通过测量被测元素的发射谱线的波长与强度进行定性与定量分析的一种原子光谱技术;而原子吸收光谱则是依据被测元素对锐线光源的吸收程度进行定量分析的一种原子光谱技术。下面对两种技术简单

原子吸收光谱的组成

物理干扰是指试样在转移、蒸发过程中任何物理因素变化而引起的干扰效应。属于这类干扰的因素有:试液的粘度、溶剂的蒸汽压、雾化气体的压力等。物理干扰是非选择性干扰,对试样各元素的影响基本是相似的。配制与被测试样相似的标准样品,是消除物理干扰的常用的方法。在不知道试样组成或无法匹配试样时,可采用标准加入法或

原子吸收光谱的概念

原子吸收光谱(AAS):原子吸收光谱包括火焰原子化吸收光谱,石墨炉原子化吸收光谱,氢化物发生原子吸收光谱等。

什么是原子吸收光谱

原子吸收光谱(AAS):原子吸收光谱包括火焰原子化吸收光谱,石墨炉原子化吸收光谱,氢化物发生原子吸收光谱等。

原子吸收光谱检测方法

  1、氢化物发生法  氢化物发生法适用于容易产生阴离子的元素,如Se、Sn、Sb、As、Pb、Hg、Ge、Bi等。这些元素一般不采取火焰原子化法检测,而是用硼氢化钠处理,因为硼氢化钠具有还原性,可以将这些元素还原成为阴离子,与硼氢化钠中电离产生的氢离子结合成气态氢化物。  如土壤监测中运用流动注射

原子吸收(发射)光谱法

方法提要试样经氢氟酸、硫酸分解,在!(H2SO4)=1%介质中,在原子吸收光谱仪上,使用空气-乙炔火焰,以硫酸钾作消电离剂,于波长670.8nm、780.0nm、852.1nm处,分别测定锂、铷、铯的吸光度或发射强度。一般常见元素均不干扰测定。测定范围0.001%~4.00%。仪器原子吸收光谱仪。试

原子吸收光谱法

用原子吸收光谱法测定铜,干扰少,方法灵敏、快速、简便,特别适用于低含量铜的测定。当试样中铜含量很低时,也可用APDC-MIBK、CHCl3或乙酸乙酯萃取,将铜富集于有机相中,直接在有机相中进行铜的测定。本法适用于0.001%~5%铜的测定,采用萃取有机相可测定0.1×10-6铜。方法提要试样经盐酸、

原子吸收光谱的概念

原子吸收光谱(Atomic Absorption Spectroscopy,AAS),又称原子分光光度法,是基于待测元素的基态原子蒸汽对其特征谱线的吸收,由特征谱线的特征性和谱线被减弱的程度对待测元素进行定性定量分析的一种仪器分析的方法。

原子吸收(发射)光谱法

方法提要试样经氢氟酸、硫酸分解,在!(H2SO4)=1%介质中,在原子吸收光谱仪上,使用空气-乙炔火焰,以硫酸钾作消电离剂,于波长670.8nm、780.0nm、852.1nm处,分别测定锂、铷、铯的吸光度或发射强度。一般常见元素均不干扰测定。测定范围0.001%~4.00%。仪器原子吸收光谱仪。试

原子吸收光谱的测量

(1)积分吸收(Kν)在吸收线轮廓内,吸收系数的积分称为积分吸收系数,简称为积分吸收,它表示吸收的全部能量。从理论上可以得出,积分吸收与原子蒸气中吸收辐射的原子数成正比。数学表达式为现代岩矿分析实验教程式中:e为电子电荷;m为电子质量;c为光速;N0为单位体积内基态原子数;f为振子强度,即能被入射辐

原子吸收光谱的原理

光电管原理是光电效应,光电管接受到光照时,PN结两侧的P区和N区因本征激发产生的少数载流子浓度增多,若光电管接在闭合回路中,就会产生电流。也就是说,光电管无需外部提供电源(施加电压),即可在闭合回路中产生电流,但是,只要产生了电流,光电管两端的电压必然不为零。被光束照射到的电子会吸收光子的能量,但是

原子吸收光谱技术应用

  1、在金属材料中的分析应用  在对一些金属材料例如铝、铝合金、铜合金、钛合金等等,一些电源材料例如银锌电池、铬镍电池、热电池、太阳电池等,这些材料运用原子吸收光谱仪的技术方法所测的实验数据普遍具有较高的准确度,实现了实验条件的优化与完善。  2、在粉末材料中的分析应用  在分析与测试微量与常量的

原子吸收光谱的简介

从1955年澳大利亚科学家A. Walsh(威尔茨)发表原子吸收光谱法(AAS)分析论文并设计出第一台AAS仪后,开创了火焰原子吸收光谱分析法(FAAS)。1959年,前苏联李沃夫创建石墨炉原子吸收法(GFAAS),在此基础上,1968年经过德国学者麦斯曼( H.MassMann)发展和改进,设计出

原子吸收光谱技术应用

  1、在金属材料中的分析应用  在对一些金属材料例如铝、铝合金、铜合金、钛合金等等,一些电源材料例如银锌电池、铬镍电池、热电池、太阳电池等,这些材料运用原子吸收光谱仪的技术方法所测的实验数据普遍具有较高的准确度,实现了实验条件的优化与完善。  2、在粉末材料中的分析应用  在分析与测试微量与常量的

原子吸收光谱法

一、内容概述原子吸收光谱法(AAS)又称为原子吸收分光光度法,基本原理是每种元素都有其特征的光谱线,当光源发射的某一特征波长的光通过待测样品的原子蒸气时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使光源发出的入射光减弱,可以将特征谱线因吸收而减弱的程度用吸光度表示,吸光度与被测样品中

原子吸收(发射)光谱法

方法提要试样经氢氟酸、硫酸分解,在!(H2SO4)=1%介质中,在原子吸收光谱仪上,使用空气-乙炔火焰,以硫酸钾作消电离剂,于波长670.8nm、780.0nm、852.1nm处,分别测定锂、铷、铯的吸光度或发射强度。一般常见元素均不干扰测定。测定范围0.001%~4.00%。仪器原子吸收光谱仪。试