Antpedia LOGO WIKI资讯

椭偏仪的工作原理简介

入射光束(线偏振光)的电场可以在两个垂直平面上分解为矢量元。P平面包含入射光和出射光,s平面则是与这个平面垂直。类似的,反射光或透射光是典型的椭圆偏振光,因此仪器被称为椭偏仪。关于偏振光的详细描述可以参考其他文献。在物理学上,偏振态的变化可以用复数ρ来表示:其中,ψ和∆分别描述反射光p波与s波振幅衰减比和相位差。P平面和s平面上的Fresnel反射系数分别用复函数rp和rs来表示。rp和rs的数学表达式可以用Maxwell方程在不同材料边界上的电磁辐射推到得到。 其中ϕ0是入射角,ϕ1是折射角。入射角为入射光束和待研究表面法线的夹角。通常椭偏仪的入射角范围是45°到90°。这样在探测材料属性时可以提供最佳的灵敏度。每层介质的折射率可以用下面的复函数表示 通常n称为折射率,k称为消光系数。这两个系数用来描述入射光如何与材料相互作用。它们被称为光学常数。实际上,尽管这个值是随着波长、温度等参数变化而变化的。当待测样品周围介质......阅读全文

椭偏仪的工作原理简介

  入射光束(线偏振光)的电场可以在两个垂直平面上分解为矢量元。P平面包含入射光和出射光,s平面则是与这个平面垂直。类似的,反射光或透射光是典型的椭圆偏振光,因此仪器被称为椭偏仪。关于偏振光的详细描述可以参考其他文献。在物理学上,偏振态的变化可以用复数ρ来表示:其中,ψ和∆分别描述反射光p波与s波振

解析椭偏仪的工作原理

  椭偏仪是一种用于检测薄膜厚度,光学常数和材料微观结构的光学测量仪器。由于其高测量精度,它适用于超薄膜,不接触样品,不会损坏样品而不需要真空,使椭偏仪成为一种极具吸引力的测量仪器。   椭偏仪的工作原理:   测量仪器椭偏仪   不同的硬件配置用于光谱椭偏仪的测量,但每种配置必须产生已知偏

椭偏仪简介

  椭偏仪是一种用于探测薄膜厚度、光学常数以及材料微结构的光学测量仪器。由于测量精度高,适用于超薄膜,与样品非接触,对样品没有破坏且不需要真空,使得椭偏仪成为一种极具吸引力的测量仪器。  早期的椭偏研究主要集中于偏振光及偏振光与材料相互作用的物理学研究以及仪器的光学研究。计算机的发展和应用使椭偏数据

简述椭偏仪的测量原理

  测量速度通常由所选择的分光仪器(用来分开波长)来决定。单色仪用来选择单一的、窄带的波长,通过移动单色仪内的光学设备(一般由计算机控制),单色仪可以选择感兴趣的波长。这种方式波长比较准确,但速度比较慢,因为每次只能测试一个波长。如果单色仪放置在样品前,有一个优点是明显减少了到达样品的入射光的量(避

椭偏仪的历史

  早期的椭偏研究主要集中于偏振光及偏振光与材料相互作用的物理学研究以及仪器的光学研究。计算机的发展和应用使椭偏数据的拟合分析变得容易,促使椭偏仪在更多的领域得到应用。硬件的自动化和软件的成熟大大提高了运算的速度,成熟的软件提供了解决问题的新方法,因此,椭偏仪已被广泛应用于材料、物理、化学、生物、

椭偏仪的应用

  应用领域   半导体、微电子、MEMS、通讯、数据存储、光学镀膜、平板显示器、科学研究、物理、化学、生物、医药[2]…   可测材料   半导体、介电材料、有机高分子聚合物、金属氧化物、金属钝化膜、自组装单分子层、多层膜物质和石墨烯等等[1]

椭偏仪的构造

  在光谱椭偏仪的测量中使用不同的硬件配置,但每种配置都必须能产生已知偏振态的光束。测量由被测样品反射后光的偏振态。这要求仪器能够量化偏振态的变化量ρ。  有些仪器测量ρ是通过旋转确定初始偏振光状态的偏振片(称为起偏器)。再利用第二个固定位置的偏振片(称为检偏器)来测得输出光束的偏振态。另外一些仪器

椭偏仪测量的介绍

椭偏仪1是一种用于探测薄膜厚度、光学常数以及材料微结构的光学测量设备。由于厚度和折光率测量精度高,与样品非接触,对样品没有破坏且不需要真空,使得椭偏仪成为一种极具吸引力的测量设备。利用椭偏仪来测量薄膜的过程就是椭偏仪测量。

椭偏仪的光谱范围

  最初,椭偏仪的工作波长多为单一波长或少数独立的波长,最典型的是采用激光或对电弧等强光谱光进行滤光产生的单色光源。大多数的椭偏仪在很宽的波长范围内以多波长工作(通常有几百个波长,接近连续)。和单波长的椭偏仪相比,光谱型椭偏仪有下面的优点:可以提升多层探测能力,可以测试物质对不同波长光波的折射率等。

椭偏仪的功能性质

  在光谱椭偏仪的测量中使用不同的硬件配置,但每种配置都必须能产生已知偏振态的光束。测量由被测样品反射后光的偏振态。这要求仪器能够量化偏振态的变化量ρ。  有些仪器测量ρ是通过旋转确定初始偏振光状态的偏振片(称为起偏器)。再利用第二个固定位置的偏振片(称为检偏器)来测得输出光束的偏振态。另外一些仪器