关于AGO蛋白质的基本介绍

Argonaute(AGO):一类庞大的蛋白质家族,是组成RISCs复合物的主要成员。AGO蛋白质主要包含两个结构域:PAZ和PIWI两个结构域,但具体功能尚不清楚。研究表明,PAZ结构域结合到siRNA 的3’的二核苷酸突出端;一些AGO蛋白质的PIWI结构域赋予slicer以内切酶的活性。PAZ和PIWI两个结构域,对于siRNA和目标mRNA相互作用,从而导致目标mRNA的切割或者翻译抑制过程,是必不可少的。同时,不同的AGO蛋白质有着不同的生物学功能。例如,在人当中,AGO2“筹划”了RISCs对于目标mRNA的切割过程;而AGO1 和AGO3则不具备这个功能。......阅读全文

关于AGO蛋白质的基本介绍

  Argonaute(AGO):一类庞大的蛋白质家族,是组成RISCs复合物的主要成员。AGO蛋白质主要包含两个结构域:PAZ和PIWI两个结构域,但具体功能尚不清楚。研究表明,PAZ结构域结合到siRNA 的3’的二核苷酸突出端;一些AGO蛋白质的PIWI结构域赋予slicer以内切酶的活性。P

关于蛋白质的基本介绍

  蛋白质(protein)是组成人体一切细胞、组织的重要成分。机体所有重要的组成部分都需要有蛋白质的参与。一般说,蛋白质约占人体全部质量的18%,最重要的还是其与生命现象有关。  蛋白质是生命的物质基础,是有机大分子,是构成细胞的基本有机物,是生命活动的主要承担者。没有蛋白质就没有生命。氨基酸是蛋

关于蛋白质折叠的基本介绍

  蛋白质折叠(Protein folding)是蛋白质获得其功能性结构和构象的过程。通过这一物理过程,蛋白质从无规则卷曲折叠成特定的功能性三维结构。在从mRNA序列翻译成线性的肽链时,蛋白质都是以去折叠多肽或无规则卷曲的形式存在。  结构决定功能,仅仅知道基因组序列并不能使我们充分了解蛋白质的功能

关于结合蛋白质的基本介绍

  一般可以依据所结合的辅基种类对结合蛋白质进行分类,这种方法具有简便实用的特点。在自然界中,结合蛋白质的分布要远比单纯蛋白质广泛。  1、脂蛋白  脂蛋白是由单纯蛋白质与酯类结合而构成,通常不溶于乙醚、苯和氯仿等溶剂。主要存在于细胞膜中。  2、磷蛋白  磷蛋白是由单纯蛋白质与磷酸结合而构成,不溶

关于蛋白质复性的基本介绍

  在变性条件不剧烈,变性蛋白质内部结构变化不大时,除去变性因素,在适当条件下变性蛋白质可恢复其天然构象和生物活性,这种现象称为蛋白质的复性(renaturation)。  蛋白质因受某些物理或化学因素的影响,分子的空间构象被破坏,从而导致其理化性质发生改变并失去原有的生物学活性的现象称为蛋白质的变

关于蛋白质工程的基本介绍

  蛋白质工程就是通过对蛋白质化学、蛋白质晶体学和蛋白质动力学的研究,获得有关蛋白质理化特性和分子特性的信息,在此基础上对编码蛋白质的基因进行有目的的设计和改造,通过基因工程技术获得可以表达蛋白质的转基因生物系统,这个生物系统可以是转基因微生物、转基因植物、转基因动物,甚至可以是细胞系统。

关于γBGT蛋白质结构的基本介绍

  γ-BGT是从银环蛇毒腺中分离出的一种新的突触后神经毒素。Aird SD等(1999)利用质谱测量法和Edman降解法测定了其一级结构。γ-BGT的一级结构由68个氨基酸残基构成,分子量为7524.7。其氨基酸序列为:MQCKTCSFYT CPNSETCPDGKNICVKR-SWT AVRGDG

关于缀合蛋白质的基本信息介绍

  结合蛋白质的分子中除氨基酸组分之外,还含有非氨基酸物质,后者称为辅因子,二者以共价或非共价形式结合,往往作为一个整体从生物材料中被分离出来。单纯蛋白质是指分子组成中,除氨基酸构成的多肽蛋白成分外,没有任何非蛋白成分称为单纯蛋白质。自然界中的许多蛋白质属于此类。而结合蛋白质是单纯蛋白质和其他化合物

关于翻译后修饰的蛋白质的基本介绍

  前体蛋白是没有活性的,常常要进行一个系列的翻译后加工,才能成为具有功能的成熟蛋白。加工的类型是多种多样的,一般分为以下几种:N-端fMet或Met的切除、二硫键的形成、化学修饰和剪切。当合成蛋白质时,20种不同的氨基酸会组合成为蛋白质。蛋白质的翻译后蛋白质其他的生物化学官能团(如醋酸盐、磷酸盐、

关于极低密度脂蛋白质的基本介绍

  极低密度脂蛋白质是运输内源性甘油三酯的主要形式。正常人极低密度脂蛋白质大部分代谢变成低密度脂蛋白。含有甘油三酯、胆固醇、胆固醇酯和磷脂,甘油三酯(TG)占60%,胆固醇(TC)占20%,载脂蛋白占10%,其他成份10%。蛋白质部分为ApoAⅠ、AⅣ、B100、C、E等。VLDL在肝脏合成,利用来

关于αBGT蛋白质结构的基本信息介绍

  α-BGT是1963年发现的。是一种碱性多肽,含较多的碱性氨基酸和10个半胱氨酸残基,半胱氨酸残基都参与5对二硫键的形成。属于长链突触后神经毒素,由74个氨基酸组成,相对分子质量为8000 D,空间结构复杂,几乎每一个氨基酸都对空间结构的形成发挥着重要作用。虽然分子量并不大,但α-BGT具有相当

什么是Argonaute(AGO)?

Argonaute(AGO):一类庞大的蛋白质家族,是组成RISCs复合物的主要成员。AGO蛋白质主要包含两个结构域:PAZ和PIWI两个结构域,但具体功能尚不清楚。研究表明,PAZ结构域结合到siRNA 的3’的二核苷酸突出端;一些AGO蛋白质的PIWI结构域赋予slicer以内切酶的活性。PAZ

关于蛋白质热量营养不良症的基本介绍

  蛋白质-热量营养不良症(protein energy malnutrition,PEM)是因食物供应不足或疾病因素引起的一种营养缺乏病,临床上表现为消瘦(marasmus)和恶性营养不良综合征(kwashiorkor)。

蛋白质组的基本介绍

  蛋白质组(Proteome)的概念最先由Marc Wilkins提出,指由一个基因组(Genome),或一个细胞、组织表达的所有蛋白质(protein). 蛋白质组的概念与基因组的概念有许多差别,它随着组织、甚至环境状态的不同而改变。 在转录时,一个基因可以多种mRNA形式剪接,一个蛋白质组不是

关于蛋白质类肿瘤标志物检测的基本介绍

  大多数实体瘤是由上皮细胞衍生而来,当肿瘤细胞快速分化、增值时,一些在正常组织中不表现的细胞类型或组分大量出现,如作为细胞支架的角蛋白,成为肿瘤标志。化学本质属于蛋白质类的肿瘤标志包括:  ①酶;  ②蛋白类或肽类激素;  ③不属于前两者的其他蛋白质。

AGO2基因突变与药物因子介绍

该基因编码Argonaute家族的一个成员,在RNA干扰中起作用。编码的蛋白质是高度碱性的,包含一个PAZ结构域和一个PIWI结构域它可能与dicer1相互作用,在短干扰RNA介导的基因沉默中发挥作用已发现该基因编码不同亚型的多个转录变体。[由RefSeq提供,2009年9月]This gene e

AGO3基因突变与药物因子介绍

该基因编码Argonaute家族的一个成员,在RNA干扰中起作用。编码的蛋白质是高度碱性的,包含PAZ结构域和PIWI结构域,可能在短干扰RNA介导的基因沉默中发挥作用该基因位于1号染色体上,由Argonaute 4和真核翻译起始因子2C,1等家族成员串联而成。已鉴定出两个编码不同亚型的转录变体[由

Argonaute(AGO)蛋白的结构和功能

Argonaute(AGO):一类庞大的蛋白质家族,是组成RISCs复合物的主要成员。AGO蛋白质主要包含两个结构域:PAZ和PIWI两个结构域,但具体功能尚不清楚。研究表明,PAZ结构域结合到siRNA 的3’的二核苷酸突出端;一些AGO蛋白质的PIWI结构域赋予slicer以内切酶的活性。PAZ

RNA干扰相关知识Argonaute(AGO)

Argonaute(AGO):一类庞大的蛋白质家族,是组成RISCs复合物的主要成员。AGO蛋白质主要包含两个结构域:PAZ和PIWI两个结构域,但具体功能尚不清楚。研究表明,PAZ结构域结合到siRNA 的3’的二核苷酸突出端;一些AGO蛋白质的PIWI结构域赋予slicer以内切酶的活性。PAZ

蛋白质分离纯化基本介绍

是当代生物产业当中的核心技术。该技术难度、成本均高;例如一个生物药品的成本75%都花在下游蛋白质分离纯化当中。

关于蛋白质的相关介绍

   蛋白质一词源自希腊语πρώτειος(proteios),意为“主要”、“领先”或“站在前面”,可见早在命名之初,人们就明白这种物质的重要性。早在18世纪,蛋白质被Antoine Fourcroy等人认为是一类独特的生物分子,其特征是该分子在加热或酸处理下具有凝结或絮凝的能力[2]。荷兰化学家

结合蛋白质的基本内容介绍

  结合蛋白质的分子中除氨基酸组分之外,还含有非氨基酸物质,后者称为辅因子,二者以共价或非共价形式结合,往往作为一个整体从生物材料中被分离出来。单纯蛋白质是指分子组成中,除氨基酸构成的多肽蛋白成分外,没有任何非蛋白成分称为单纯蛋白质。自然界中的许多蛋白质属于此类。而结合蛋白质是单纯蛋白质和其他化合物

关于蛋白质的变性的介绍

  在热、酸、碱、重金属盐、紫外线等作用下,蛋白质会发生性质(包括物理、化学、生物性质)上的改变而凝结起来。这种凝结是不可逆的,不能再使它们恢复为原来的蛋白质。蛋白质的这种变化叫做变性。某些有机溶剂也能使蛋白质变性。蛋白质变性后,就丧失了原有的可溶性,并且失去了它们生理上的作用。高温消毒灭菌就是利用

关于蛋白质工程融合蛋白质的介绍

  脑啡肽(Enk)N端5肽线形结构是与δ型受体结合的基本功能区域,干扰素(IFN)是一种广谱抗病毒抗肿瘤的细胞因子。黎孟枫等人化学合成了EnkN端5肽编码区,通过一连接3肽编码区与人α1型IFN基因连接,在大肠杆菌中表达了这一融合蛋白。以体外人结肠腺癌细胞和多形胶质瘤细胞为模型,采用3H-胸腺嘧啶

关于混倍性的基本介绍

  混倍性是指在同一个体中二倍性组织与非二倍性组织混存的现象(B.Nemec,1931),此时称该个体称为混倍体(mixoploid)。  这种个体的染色体数仍表现为多倍性的和异倍性的变化。用秋水仙素处理引起体细胞的染色体数加倍时,二倍性细胞和多倍性细胞也往往混在一起。通常在菠菜的根尖上可看到混倍性

关于甲沟炎的基本介绍

  甲沟炎(paronychia)是一种累及甲周围皮肤皱襞的炎症反应,表现为急性或慢性化脓性、触痛性和疼痛性甲周组织肿胀,由甲皱襞脓肿引起。当感染变成慢性时,甲基底部出现横嵴,并随着复发出现新嵴。手指受累较脚趾更常见。主要易感因素为损伤导致甲上皮与甲板分离,化脓性球菌或酵母菌可继发性侵入潮湿的甲沟和

关于强脊炎的基本介绍

  强脊炎属于风湿病范畴,是血清阴性脊柱关节病中的一种。研究表明,该病原因尚不很明确,以脊柱为主要病变的慢性疾病,病变主要累及骶髂关节,引起脊柱强直和纤维化,造成弯腰、行走活动受限,并可有不同程度的眼、肺、肌肉、骨骼的病变,也有自身免疫功能的紊乱,所以又属自身免疫性疾病。

关于丙磺舒的基本介绍

  丙磺舒(Probenecid)抑制尿酸盐在近曲肾小管的主动再吸收,增加尿酸盐的排泄而降低血中尿酸盐的浓度。可缓解或防止尿酸盐结节的生成,减少关节的损伤,亦可促进已形成的尿酸盐溶解。无抗炎、镇痛作用。可以竞争性抑制弱有机酸(如青霉素、头孢菌素)在肾小管的分泌,故可以增加这些抗生素的血药浓度和延长它

关于混倍体的基本介绍

  这种个体的染色体数仍表现为多倍性的和异倍性的变化。用秋水仙素处理引起体细胞的染色体数加倍时,二倍性细胞和多倍性细胞也往往混在一起。通常在菠菜的根尖上可看到混倍性。在昆虫中,有由于内分裂所造成的内多倍化(参见内多倍性)而产生数目极多的巨核〔如已知在一种水(Gerris lateralis)的唾腺中

关于鼻衄的基本介绍

  鼻衄是临床常见的症状之一,俗称鼻出血。可由鼻部疾病引起,也可由全身疾病所致。鼻出血多为单侧,少数情况下可出现双侧鼻出血;出血量多少不一,轻者仅为涕中带血,重者可引起失血性休克,反复鼻出血可导致贫血。