科学家解析嘌呤能受体与抗血栓药物复合物晶体结构

血栓性疾病包括中风、冠心病、肺栓塞等各种疾病,是严重威胁人类的生命健康、致死致残的重要疾病之一。在血栓性疾病的发病过程中,嘌呤能受体P2Y12 是刺激血栓形成的重要因子。因此,阻断P2Y12受体血液凝固,其阻断剂也是当代药物研究的重点和热点之一。当前,市场上靶向该受体的药物都存在一定的副作用或者不足,例如第四代P2Y12受体阻断剂可能导致病人呼吸困难。P2Y12受体的三维结构以及受体配体识别方式等信息的缺失则严重制约了新的抗血栓药物研发。 中国科学院上海药物研究所研究员赵强和吴蓓丽的研究团队,与美国Scripps研究所、上海科技大学iHuman 研究所、美国国立卫生研究院 (NIH) 和德国波恩大学通力合作,首次解析了P2Y12受体与抗血栓药物复合物的高分辨率的晶体结构。该研究发现P2Y12受体存在许多与其它大部分已知G蛋白偶联受体结构不同的结构特征,拓展了我们对这一受体超家族的认知。 此外,研究还首次在......阅读全文

药物与受体概念

  受体(receptor)是细胞在进化过程中形成的细胞蛋白组分,能识别周围环境中某种微量化学物质,首先与之结合,并通过中介的信息转导与放大系统,触发随后的生理反应或药理效应。自从Langley 提出受体学说100年后,受体已被证实为客观存在的实体,类型繁多,作用机制多已被阐明,现在受体已不再是一个

《食品中5种α受体阻断类药物的测定》

  市场监管总局关于发布《食品中5种α-受体阻断类药物的测定》食品补充检验方法的公告BJS 201808   1 范围   本方法规定了食品(含保健食品)中酚妥拉明、哌唑嗪、特拉唑嗪、育亨宾、妥拉唑林的高效液相色谱-串联质谱测定方法。   本方法适用于糖果(硬质糖果、凝胶糖果)、酒、茶饮料等

新研究发现引发药物过敏反应的关键受体

  英国《自然》杂志网站17日刊登一项研究成果,科研人员通过动物实验发现,在一种免疫细胞表面附着的蛋白质受体是引发药物过敏反应的“开关”,去除这种蛋白质可有效预防此类过敏症状。   一些人在注射或口服某些药物后,会发生一系列过敏样反应,比如出现皮疹、全身性过敏反应、血压和心率变化等。此前研究发现,这

以G蛋白偶联受体为靶点的多肽药物研发

  G蛋白偶联受体(G Protein-Coupled Receptors, GPCRs)是人体内最大的一类蛋白家族。GPCR广泛参与生理过程的调控,与多种疾病相关,且结构上有结合口袋,是很好的成药位点。目前已有超过475种以GPCR为靶点的药物获批上市,销售额占整体药物市场的27%。  GPCR是

Toll样受体的受体分布

TLRs分布的细胞多达20余种,Muzio M 等对TLR1-TLR5表达于人类白细胞的研究中发现,TLR1能在包括单核细胞,多形核细胞,T、B淋巴细胞及NK细胞等多种细胞中表达,TLR2、TLR4、TLR5只在髓源性细胞(如单核巨噬细胞)上表达,而TLR3只特异性表达于树突状细胞(dendriti

Toll样受体的受体分类

在哺乳动物及人类中已经发现的人TLRs家族成员有11个。其中了解比较清楚的有TLR2,TLR4,TLR5和TLR9。人的TLRs家族基因定位分别是定(TLR1,2,3,6,10)4号染色体,9号染色体(TLR4),1号染色体(TLR5),3号染色体(TLR9),x号染色体(TLR7,8)。根据TLR

Toll样受体的受体结构

所有Toll样受体同源分子都是Ⅰ型跨膜蛋白,可分为胞膜外区,胞浆区和跨膜区三部分。Toll样受体胞膜外区主要行使识别受体及与其他辅助受体(co-receptor)结合形成受体复合物的功能。Toll样受体的胞浆区与IL-1R家族成员胞浆区高度同源(IL-1R介导的信号传导系统和机制与果蝇类似),该区称

T细胞受体协同受体介绍

T细胞受体与特异抗原的结合需要协同受体同时结合到MHC分子上加以强化。总共有两种不同的T细胞协同受体:辅助型T细胞表面的CD4分子,负责识别第二类主要组织相容性复合体(MHC II)细胞毒性T细胞表面的CD8分子,负责识别第一类主要组织相容性复合体(MHC I)协同受体不仅提高了T细胞受体在功能上的

特殊G蛋白偶联受体-作为开发新型癌症药物的关键靶点

  近日,一项刊登在国际杂志Nature Communications上的研究报告中,来自瑞典卡罗琳学院的研究人员通过研究揭示了癌症突变影响细胞膜表面特定类型受体的分子机制,相关研究或为开发治疗特定类型癌症的个体化药物疗法提供新的思路,比如直肠癌和肺癌等。    文章中,研究者重点对一类名为Clas

血管紧张素受体的独特激活机制,有望开发出新的药物

  与当前使用的许多药物一样,降血压药物通常具有“脱靶”效应,这是因为我们迄今为止尚未精确地理解它们是如何起作用的。  如今,在两项新的研究中,来自美国杜克大学、加州大学洛杉矶分校、斯坦福大学和哈佛大学的研究人员准确地展示了一种至关重要的细胞表面受体如何与各种药物发生不同的相互作用,从而有望让人们为

上海药物所揭示阿片受体家族与内啡肽系统的分子机制

  内源阿片系统由四个阿片受体成员以及一系列阿片肽组成,广泛分布在中枢神经系统、外周神经系统和免疫系统,调控镇痛、欣快、奖赏、认知、应激等信号通路,是临床用于治疗疼痛、焦虑等疾病的重要靶标。  阿片受体家族共有四个成员即μOR、δOR、κOR、NOPR,均属于G蛋白偶联受体,主要通过偶联下游Gi蛋白

激素受体

中文名激素受体外文名hormone receptor定义激素受体:位于细胞表面或细胞内,结合特异激素并引发细胞发生生理生化反应的蛋白质。位    置细胞表面或细胞内作    用结合特异激素

什么β受体

受体:是存在于细胞膜上、胞浆内或细胞核上的大分子蛋白质,它能识别周围环境中某种微量化学物质,首选与之结合,随后产生相应的药理效应。传出神经系统的受体:可分为.胆碱受体和肾上腺素受体。其中肾上腺素受体是与NA或肾上腺素结合的受体,主要分布于大部分交感神经节后纤维所支配的效应器细胞膜上。肾上腺素受体又分

膜受体的激素受体的相关介绍

  激素与受体结合后如何产生生物效应?20世纪60年代提出的第二信使假设认为,作为第一信使的激素分子与细胞膜受体结合后并不进入细胞。结合激素的受体能使位于膜上的腺苷酸环化酶活化,从而使ATP转成环(化)腺苷酸(cAMP),后者称为第二信使,它能引发细胞内一系列生化反应而产生最终生物效应。例如,肾上腺

串联质谱法检测动物源性食品中β受体激动剂类药物残留

实验材料动物源性食品仪器、耗材TSQ Quantum三重四极杆串联质谱仪电喷雾电离源Surveyor AS自动进样器β-受体激动剂,又称为β-兴奋剂(β-agonists)是一类人工合成药物,主要用于防治人、兽支气管哮喘和支气管痉挛,在药学上称为β-肾上腺素兴奋剂。β-受体激动剂在体育比赛中可用于增

新的受体信号转导机制可能为药物研发提供新方向

  在一项发表在《PLoS ONE》杂志上的研究中,科学家新发现的受体信号转导机制可能帮助我们更好的设计药物。新发现的一组蛋白alpha arrestins(抑制蛋白类)可能在细胞信号转导过程中发挥关键作用。  市场上的超过三分之一的药物是针对G蛋白偶联受体发挥作用的,G蛋白偶联受体主要控制细胞信号

科学家解析嘌呤能受体与抗血栓药物复合晶体结构

  中科院上海药物研究所赵强和吴蓓丽研究团队日前首次解析了P2Y12受体与抗血栓药物复合物的高分辨率晶体结构。   血栓性疾病包括中风、冠心病、肺栓塞等各种疾病,是严重威胁人类生命健康的重要疾病之一。在血栓性疾病的发病过程中,嘌呤能受体P2Y12是刺激血栓形成的重要因子,因此其阻断剂也是

细胞膜受体的毒素受体的介绍

  发现很多毒素也是通过与细胞膜上的受体相结合后才产生效应的。如霍乱毒素是霍乱弧菌产生的外毒素,分子量为84000,由A、B二种亚单位组成。A亚单位有两条肽链A1和A2,由一对二硫键联接。亚单位B与细胞膜上的受体相结合。亚单位A1则具有激活膜上腺苷酸环化酶的作用。  霍乱毒素的受体是一种神经节苷脂,

欧洲首个靶向IL17受体的银屑病药物Kyntheum获欧盟批准

  阿英国制药巨头阿斯利康(AstraZeneca)与合作伙伴利奥制药(Leo Pharma)近日宣布,单抗类抗炎药Kyntheum(brodalumab)已获欧盟委员会(EC)批准,作为一种新的生物制剂,用于适合系统治疗(全身治疗)的中度至重度斑块型银屑病成人患者。  在美国,brodalumab

血栓素A2受体结构揭示抗心血管疾病药物作用机制

  近日,中国科学院上海药物研究所在抗心血管疾病药物靶点的结构和功能研究方面取得新进展——首次测定了血栓素A2受体TP分别与两种抑制剂结合的高分辨率三维结构,揭示了该受体与多种药物分子的相互作用机制,为治疗心血管疾病的药物研发提供了重要的依据。研究成果于伦敦时间12月3日在国际学术期刊Nature

上海药物所等揭示孤儿受体GPR119识别配体的分子机制

  糖尿病、脂肪肝和肥胖症等代谢性疾病已成为影响人类健康的“杀手”之一。研究显示一些孤儿受体可能成为治疗这些疾病的重要靶点。GPR119又称葡萄糖依赖的促胰岛素受体(Glucose-dependent insulinotropic receptor),是G蛋白偶联受体(GPCR)超家族中的一种孤儿受

上海药物所首次揭示维甲酸X受体四聚体抑制机制

     RXR的配体结合结构域在不同状态下采取的不同三维结构   维甲酸X受体(RXR)是核受体蛋白家族的核心成员。作为一种配体调节的转录因子,RXR参与了细胞发育和代谢调节等众多生理过程,被认为是治疗癌症和代谢性疾病的重要药物靶标。   2011年1月,国际重要学术期刊《生物

液质联用检测动物源性食品中β受体激动剂类药物残留

β-受体激动剂,又称为β-兴奋剂(β-agonists)是一类人工合成药物,主要用于防治人、兽支气管哮喘和支气管痉挛,在药学上称为β-肾上腺素兴奋剂。β-受体激动剂在体育比赛中可用于增强运动员、动物(如马)肌肉,提高运动成绩,国际奥委会将β-受体激动剂列为禁用药物。β-受体激动剂根据苯环取代基结构

激素核受体

中文名称激素核受体英文名称hormone nuclear receptor定  义细胞核内激素作用的靶分子。多为反式作用因子,当与相应的激素结合后,能与DNA的顺式作用元件结合,调节基因转录。应用学科生物化学与分子生物学(一级学科),激素与维生素(二级学科)

受体的功能

受体具有两方面的功能:第一个功能是识别自己特异的信号分子(配体),并且与之结合。正是通过受体与信号配体分子的识别,使得细胞能够充满无数生物分子的环境中,辨认和接收某一特定信号。第二个功能是把识别和接受的信号,准确无误地放大并传递到细胞内部,从而启动一系列胞内信号级联反应,最后导致特定的细胞生物效应。

受体的分类

根据受体在细胞中的位置,将其分为细胞表面受体和细胞内受体两大类。受体本身至少含有两个活性部位:一个是识别并结合配体的活性部位;另一个是负责产生应答反应的功能活性部位,这一部位只有在与配体结合形成二元复合物并变构后才能产生应答反应,由此启动一系列的生化反应,最终导致靶细胞产生生物效应。1.细胞膜受体大

红藻氨酸受体

红藻氨酸受体(KAR)是对神经递质谷氨酸作出反应的离子型受体。通过激动剂红藻氨酸盐的选择性激活,它们首先被鉴定为一种独特的受体类型,红藻氨酸盐是一种首先从藻类Digeneasimplex中分离出来的药物。传统上,它们与AMPA受体一起被归类为非NMDA型受体。与其他离子型谷氨酸受体AMPA和NMDA

β受体的分类

第一类为非选择性的,作用于β1和β2受体,常用药物为普萘洛尔,目前已较少应用;第二类为选择性的,主要作用于β1受体,常用药物为美托洛尔、阿替洛尔、比索洛尔等;第三类也为非选择性的,可同时作用于β和α1受体,具有外周扩血管作用,常用药物为卡维地洛、拉贝洛尔。β受体阻滞剂还可以划分为脂溶性或水溶性,以及

多巴胺受体概述

  已分离出五种多巴胺受体(DA2R) , 根据它们的生物化学和药理学性质,可分为D1类和D2类受体。D1类受体包括D1和D5受体(在大鼠也称D1A和D1B受体)。D2 类受体包括D2,D3和D4受体。两类受体的C端含有磷酸化和棕榈酰化位点,涉及激动剂依赖性受体的去敏感化过程和第四胞内环的形成多巴胺

细胞膜受体的激素受体的相关介绍

  激素与受体结合后如何产生生物效应?20世纪60年代提出的第二信使假设认为,作为第一信使的激素分子与细胞膜受体结合后并不进入细胞。结合激素的受体能使位于膜上的腺苷酸环化酶活化,从而使ATP转成环(化)腺苷酸(cAMP),后者称为第二信使,它能引发细胞内一系列生化反应而产生最终生物效应。例如,肾上腺