Antpedia LOGO WIKI资讯

荧光共振能量转移的简介

当一个荧光分子(又称为供体分子)的荧光光谱与另一个荧光分子(又称为受体分子) 的激发光谱相重叠时, 供体荧光分子的激发能诱发受体分子发出荧光, 同时供体荧光分子自身的荧光强度衰减。FRET 程度与供、受体分子的空间距离紧密相关, 一般为7~10 nm 时即可发生FRET; 随着距离延长, FRET呈显著减弱。 供体和受体之间FRET的效率,可以由E=1/1+(R/R0)exp6反映,其中R表示供体和受体之间的距离,R0表示福氏半径,依赖供体发射谱和受体激发谱的重叠程度,以及供体和受体能量转移的偶极子的相对方位。......阅读全文

荧光共振能量转移的简介

  当一个荧光分子(又称为供体分子)的荧光光谱与另一个荧光分子(又称为受体分子) 的激发光谱相重叠时, 供体荧光分子的激发能诱发受体分子发出荧光, 同时供体荧光分子自身的荧光强度衰减。FRET 程度与供、受体分子的空间距离紧密相关, 一般为7~10 nm 时即可发生FRET; 随着距离延长, FRE

荧光共振能量转移(FRET)

一、活细胞研究遇到的问题:蛋白质或其他分子在活细胞内互相结合的时间和地点是了解它们功能的关键问题。要回答这一问题,需将蛋白质标上不同的荧光团。但是,光学显微镜的分辨率将蛋白质检测精度限制在大约0.2μm左右。要研究蛋白质成分的相互物理作用,需要高的分辨率。二、什么是FRET?FRET就是采用非放射方

荧光共振能量转移的发生原理

  荧光共振能量转移是指在两个不同的荧光基团中,如果一个荧光基团(供体 Donor)的发射光谱与另一个基团(受体 Acceptor)的吸收光谱有一定的重叠,当这两个荧光基团间的距离合适时(一般小于100Å),就可观察到荧光能量由供体向受体转移的现象,即以前一种基团的激发波长激发时,可观察到后一个基团

何为荧光共振能量转移技术

一、FRET技术基本原理荧光共振能量转移是指两个荧光发色基团在足够靠近时,当供体分子吸收一定频率的光子后被激发到更高的电子能态,在该电子回到基态前,通过偶极子相互作用,实现了能量向邻近的受体分子转移(即发生能量共振转移)。FRET是一种非辐射能量跃迁,通过分子间的电偶极相互作用,将供体激发态能量转移

荧光共振能量转移的发生条件介绍

  能量供给体-接受体(D–A)对之间发生有效能量转移的条件是苛刻的,主要包括:(1)能量供体的发射光谱与能量受体的吸收光谱必须重叠;(2)能量供体与能量受体的荧光生色团必须以适当的方式排列;(3)能量供体、能量受体之间必须足够接近,这样发生能量转移的几率才会高。此外,对于合适的供体、受体分子在量子

三色荧光级联荧光共振能量转移技术

荧光共振能量转移(fluorescence resonance energytransfer,FRET),是指能量从一种受激发的荧光基团(fluorophore)以非辐射的方式转移到另一种荧光基团的物理现象.FRET的能量转移效率是两个荧光基团间距离的函数,并对此距离十分敏感,它的有效响应距离一

测量生物发光共振能量转移

fff简介分子之间的能量转移大多是由辐射导致的。然而当不同荧光物质非常靠近时(

测量生物发光共振能量转移

fff简介分子之间的能量转移大多是由辐射导致的。然而当不同荧光物质非常靠近时(

荧光共振能量转移FRET肽和寡核苷酸荧光标记的应用-2

       FRET原理        荧光共振能量转移(FRET)是一种物理现象,在生物医学研究和药物发现中已经越来越流行。FRET是能量从供体分子(donor)到受体分子(acceptor)的无热量传输。供体分子是最初吸收能量的荧光基团,而受体是随后转移能量的荧光基团,这种共振相互作用发生

荧光共振能量转移FRET肽和寡核苷酸荧光标记的应用-1

     荧光染料标记的肽和寡核苷酸是生化和细胞研究中的重要工具,目前荧光肽和寡核苷酸已广泛用于所有主要类型的荧光成像中,包括荧光共振能量转移(FRET),这些标记的生物分子被广泛用于基于分子信标和其他技术的传染病诊断。FRET肽和寡核苷酸也已通过荧光相关细胞分选(FACS)用于细胞分析,用于体内或