亚洲首台离子迁移质谱仪落户军事医学科学院

来自军事医学科学院的消息:刚刚在Pittcon2007上荣获“撰稿人”金奖的WATERS公司出品的Synapt HDMS离子迁移质谱仪将于今年6月在该院的国家生物医学分析中心安装。 离子迁移质谱是离子迁移分离与质谱联用的一种新型二维质谱分析技术,是基于离子在飘移管中与缓冲气体碰撞时的碰撞截面不同,离子按大小、形状和电荷进行分离的。据了解,离子迁移质谱技术出现于2O世纪7O年代,由于其具有多样性的分析能力、良好的检测限及实时的检测能力,在当时受到人们的广泛关注。但由于该技术分辨率较低且不能给出离子质量信息,加之当时人们对离子组成的重要性缺乏理解,因此在1976年以后,有关离子迁移的研究逐渐减少。直到2O世纪 8O年代末,特别是以MALDI和ESI为代表的各种软电离方法应用以来,离子迁移质谱在化合物异构体分离方面具有的独到优势才又引起了人们的关注,相继推出了配......阅读全文

Waters液质联用方法开发

是Waters总结的,关于最初使用LCMS的一些基本原则,可以适用于任何一套液质联用。非常简洁明了,如果你初次使用LCMS,看一看一定会有很多收获的。 Waters液质联用方法开发 

质谱联用液质联用仪常见故障汇总

1.电源接通,LED指示灯不亮原因及解决措施:检查电源线是否正确连接,单相230V电源是否供应到电源板。2.仪器无法连接原因和解决措施:检查USB电缆的连接。检查仪器电源为接通后,重新启动PC。检查Lab solutions软件的环境设置。3.“STATUS” LED灯闪烁相关问题(1)“STATU

液质联用仪质谱的性能指

1、分辨率 能将两个相邻的质谐﹙质量相差1或小于1﹚予以分离的能力。低分辨率的液相色谱-质谱联用仪其质量分辨率一般用单位分辨率,若以u表示半峰宽所占的质量数,则单位分辨率的值为≤0.5u﹙ FWHM﹚,在全质量范围达3000时,按最高质量处的分辨率换算,可达6000﹙FWHM或称50%峰宽﹚,据已有

PE-Sciex-液相色谱/质谱/质谱联用仪

   仪器名称:PE Sciex 液相色谱/质谱   /质谱联用仪   仪器型号:API 3000   主要技术指标:    质量范围:5-3000amu多电荷的物质,   可检测的分子量范围达几万Da。    灵敏度:pmol   基本功能:   (1)质谱仪配有电喷雾源(ESI)

PE-Sciex-液相色谱/质谱/质谱联用仪

   仪器名称:PE Sciex 液相色谱/质谱   /质谱联用仪   仪器型号:API 3000   主要技术指标:    质量范围:5-3000amu多电荷的物质,   可检测的分子量范围达几万Da。    灵敏度:pmol   基本功能:   (1)质谱仪配有电喷雾源(ES

如何打开waters的液质联用文件

11/13/2013开机步骤1.分别打开质谱、液相色谱和计算机电源,此时质谱主机内置的CPU会通过网线与计算机主机建立通讯联系,这个时间大约需要1至2分钟。2.等液相色谱通过自检后,进入Idle状态,依照液相色谱操作程序,依次进行操作。(具体根据液相色谱不同型号来执行,下面以2695为例)。a.打开

液相色谱质谱联用仪

LC-MS联用仪主要由高效液相色谱,接口装置(同时也是电离源),质谱仪组成。高效液相色谱与一般的液相色谱相同,其作用是将混合物样品分离后进入质谱仪。此处从略。仅介绍接口装置和质谱仪部分。  LC-MS接口装置   LC-MS联用的关键是LC和MS之间的接口装置。接口装置的主要作用是去除溶剂并使样

液质联用仪分析质谱图的程序

  解析未知样的质谱图,大致按以下程序进行:解析分子离子区1, 标出各峰的质荷比数,尤其注意高质荷比区的峰。2,识别分子离子峰。首先在高质荷比区假定分子离子峰,判断该假定分子离子峰与相邻碎片离子峰关系是否合理,然后判断其是否符合氮律。若二者均相符,可认为是分子离子峰。3,分析同位素峰簇的相对强度比及

液相色谱质谱联用仪包括串联质谱吗

液相色谱质谱联用仪(LC-MS)通常包括液相色谱(LC)和质谱(MS)两部分组成。在LC部分,目标化合物被分离并分解成小分子物质,然后进入MS部分,产生一系列离子化质谱片段,揭示样品的结构信息。联用LC-MS可以为复杂混合物的分析提供更高的分辨率和灵敏度。因此,联用质谱仪是一种非常强大的分析仪器,能

液质联用质谱图怎么分析

质谱分析是先将物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。质谱的样品一般要汽化,再离子化。不纯的样品要用色谱和质谱联用仪,是通过色谱进样。即色谱分离,质谱是色谱的检测器。离子在电场和磁场的综合作用下,按照其质量数m和电荷数Z的比值(m/z,质荷比)大小依次排列

液质联用质谱发展史

液质联用质谱发展史早在19世纪末,E.Goldstein在低压放电实验中观察到正电荷粒子,随后W.Wein发现正电荷粒子束在磁场中发生偏转,这些观察结果为质谱的诞生提供了准备。世界上第一台质谱仪于1912年由英国物理学家Joseph John Thomson(1906年诺贝尔物理学奖获得者、英国剑桥

液质联用质谱图怎么分析

质谱分析是先将物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。质谱的样品一般要汽化,再离子化。不纯的样品要用色谱和质谱联用仪,是通过色谱进样。即色谱分离,质谱是色谱的检测器。离子在电场和磁场的综合作用下,按照其质量数m和电荷数Z的比值(m/z,质荷比)大小依次排列

液质联用质谱图怎么分析

质谱分析是先将物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。质谱的样品一般要汽化,再离子化。不纯的样品要用色谱和质谱联用仪,是通过色谱进样。即色谱分离,质谱是色谱的检测器。离子在电场和磁场的综合作用下,按照其质量数m和电荷数Z的比值(m/z,质荷比)大小依次排列

液质联用质谱图怎么分析

质谱分析是先将物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。质谱的样品一般要汽化,再离子化。不纯的样品要用色谱和质谱联用仪,是通过色谱进样。即色谱分离,质谱是色谱的检测器。离子在电场和磁场的综合作用下,按照其质量数m和电荷数Z的比值(m/z,质荷比)大小依次排列

液质联用质谱图怎么分析

质谱分析是先将物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。质谱的样品一般要汽化,再离子化。不纯的样品要用色谱和质谱联用仪,是通过色谱进样。即色谱分离,质谱是色谱的检测器。离子在电场和磁场的综合作用下,按照其质量数m和电荷数Z的比值(m/z,质荷比)大小依次排列

液质联用质谱图怎么分析

质谱分析是先将物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。质谱的样品一般要汽化,再离子化。不纯的样品要用色谱和质谱联用仪,是通过色谱进样。即色谱分离,质谱是色谱的检测器。离子在电场和磁场的综合作用下,按照其质量数m和电荷数Z的比值(m/z,质荷比)大小依次排列

液质联用质谱图怎么分析

在质谱图中,横坐标表示离子的质荷比(m/z)值,从左到右质荷比的值增大;纵坐标表示离子流的强度,通常用相对强度来表示,即把最强的离子流强度(响应)定为100%,其它离子流的强度以其百分数表示。一般响应最高的为化合物的分子离子峰。通常,正离子模式下为M+H;负离子模式下为M-H

液质联用中的质谱——串联质谱篇(上)

  在连接了前面的离子源、离子传输后,质谱的质量分析器还可以空间或时间的方式进行串联分析(MS/MS或MSn)。此时,第一个质量分析器用于选择与分离母离子(Parent Ion,又称前体离子Precursor Ion),被选择的母离子碎裂后产生子离子(Daughter Ion,又称产物离子Produ

液质联用中的质谱——串联质谱篇(中)

  本文举几例常见的串联质谱仪,篇幅较长分为上、中、下三篇。  线性离子阱LIT/FTICR和LIT/Orbitrap  QqQ和QTOF都是串联两个“离子束”型分析器,近年来还有一种趋势是串联两个离子捕获型分析器,线性离子阱LIT/FTICR是此类最早的类型,由于维护困难,近年来慢慢被LIT/Or

液质联用中的质谱——串联质谱篇(下)

  本文举几例常见的串联质谱仪,篇幅较长分为上、中、下三篇。  串联质谱扫描方式  串联质谱的扫描方式包括以下几种:  1、子离子扫描/产物离子扫描/碎片离子扫描(Product Ion Scan/Fragment Ion Scan):  选择某一质量的母离子进入碰撞室,与碰撞室内的碰撞气体发生解离

液相色谱质谱联用仪类型

液相色谱质谱联用仪类型有多种。1、按分析目的可分:实验室液相色谱质谱联用仪和工业液相色谱质谱联用仪。2、按分析规模可分:小型液相色谱质谱联用仪和大型液相色谱质谱联用仪。3、按质量分析器的时空属性可分:时间型液相色谱质谱联用仪和空间液相色谱质谱联用仪。4、按分辨率可分:低分辨液相色谱质谱联用仪、中分辨

液相色谱质谱联用仪概述

  液相色谱-质谱联用仪介绍  液相色谱-质谱联用仪是液相色谱与质谱联用的仪器。它结合了液相色谱仪有效分离热不稳性及高沸点化合物的分离能力与质谱仪很强的组分鉴定能力。是一种分离分析复杂有机混合物的有效手段。联机的关键是适用接口的开发,必须在试样组分进入离子源前去除溶剂,目前,多采用履带式加热传送带。

液相色谱质谱联用仪组成

液相色谱-质谱联用技术经历了一个较长的实践、研究过程,直到20世纪90年代才出现了被广泛接受的商品接口及成套仪器。    液相色谱-质谱联用仪主要由色谱仪、接口、质谱仪、电子系统、记录系统和计算机系统六大部分组成。混合样品注入色谱仪后,经色谱柱得到分离。从色谱仪流出的被分离组分依次通过接口进入质

Waters:液相色谱质谱的应用

分食品安全 和 临床的应用。 http://www.antpedia.com/?uid-1119-action-viewspace-itemid-6102

质谱联用(LCMS)液质联用仪常见故障汇总

1.电源接通,LED指示灯不亮原因及解决措施:检查电源线是否正确连接,单相230V电源是否供应到电源板。2.仪器无法连接原因和解决措施:检查USB电缆的连接。检查仪器电源为接通后,重新启动PC。检查Lab solutions软件的环境设置。3.“STATUS” LED灯闪烁相关问题(1)“STATU

质谱联用(LCMS)液质联用仪常见故障汇总

1.电源接通,LED指示灯不亮原因及解决措施:检查电源线是否正确连接,单相230V电源是否供应到电源板。2.仪器无法连接原因和解决措施:检查USB电缆的连接。检查仪器电源为接通后,重新启动PC。检查Lab solutions软件的环境设置。3.“STATUS” LED灯闪烁相关问题(1)“STATU

液质联用仪

液质联用仪是实现样品液相分离并检测过程的仪器,无论液质联用仪的类型如何变化,构成质谱系统的5个基本组成部分皆是相同的,它们是接口、电离源、真空系统、检测系统及数据处理系统。

液质联用的质谱发展史

  早在19世纪末,E.Goldstein在 低压放电实验中观察到 正电荷粒子,随后W.Wein发现正电荷 粒子束在磁场中发生偏转,这些观察结果为 质谱的诞生提供了准备。  Joseph John Thomson  世界上第一台质谱仪于1912年由 英国 物理学家Joseph John Thomso

质谱联用仪简介

  质谱联用仪质量检测器可以取代色谱仪的多种检测器,通用性强,使用极其方便。  目前,在分析仪器中,色谱仪器具有重要地位。由于色谱仪的色谱柱具有高效的分离能力,把物质按保留时间大小进行分离,然后通过与标样保留时间进行对比的方法确定物质性质,因此对未知样品很难定性分析。而质谱仪是直接测定物质的质量数与

液质联用仪信号低是液相原因还是质谱原因

这个不好说,两种原因都有可能,也有可能是你接口的问题。首先要确定液相条件适合进质谱;如果是优化过的液相条件,那就可能是质谱设置的问题。进质谱的样品必须能很好的被雾化,如果进质谱的流量大而仪器设置没有跟上,样品雾化效果差,信号自然也低。另外,如果样品浓度太低信号也会差。