重庆研究院等揭示石墨烯量子点对斑马鱼AhR信号通路影响

近日,中国科学院重庆绿色智能技术研究院环境与健康研究中心与微纳制造与系统集成研究中心、郑州大学材料科学与工程学院合作,利用斑马鱼模型深入研究了石墨烯量子点对斑马鱼AhR信号通路的扰动作用并取得新进展,相关研究成果发表在《生物材料》(Biomaterials)上。 石墨烯量子点已被广泛应用于医药和生物荧光成像领域。然而,石墨烯量子点固有的生物特性及在生物系统中的潜在风险至今仍然是未知的。研究团队利用改进的Hummers方法和DMF水热处理方法,成功地合成了量子产率高达24.62%的还原性石墨烯量子点(rGOQDs)。通过使用不同浓度的rGOQDs暴露斑马鱼后进行荧光生物成像,并且成功观察到rGOQDs在斑马鱼中的分布。此外,研究团队还评估了rGOQDs对斑马鱼的发育毒性和遗传毒性,以进一步研究rGOQD对生物的潜在危害。 研究结果表明,rGOQDs对斑马鱼发育产生一定的影响,畸形率与rGOQDs具有浓度依赖性,并使用了转基......阅读全文

重庆研究院等揭示石墨烯量子点对斑马鱼AhR信号通路影响

  近日,中国科学院重庆绿色智能技术研究院环境与健康研究中心与微纳制造与系统集成研究中心、郑州大学材料科学与工程学院合作,利用斑马鱼模型深入研究了石墨烯量子点对斑马鱼AhR信号通路的扰动作用并取得新进展,相关研究成果发表在《生物材料》(Biomaterials)上。  石墨烯量子点已被广泛应用于医药

引入石墨烯量子点,让古墓壁画更“长寿”

   价值连城的古代馆藏壁画正受到日益严重的损坏。而由于具有极好的兼容性,无机纳米材料(如纳米氢氧化钙)作为一种前景良好的壁画保护材料受到广泛关注。但到目前为止,其合成方法仍然成本高,操作复杂,而且通常使用有机溶剂。  西北工业大学纳米能源材料研究中心教授魏秉庆团队近日在《先进功能材料》上发表论文称

水生所在污染物通研究中取得进展

  肠道微生物在维持宿主健康方面发挥重要作用,紧密调控着宿主生物一系列生理代谢活动,如能量代谢、免疫功能、神经行为等。然而,环境持久性有机污染物会显著干扰肠道微生物群落,进而影响宿主生理健康。然而,目前污染物如何影响肠道微生物和宿主健康缺乏机理研究。  近日,中国科学院水生生物研究所研究员陈联国团队

斑马鱼

一、概述斑马鱼是生长在印度、巴基斯坦淡水河流中的一种硬骨鱼(鲤鱼),成年鱼全身仅长4-5厘米,因全身横向分布着一道一道褐色的斑马线而得名。斑马鱼很容易在实验室饲养,一般3个月就可以达到生殖成熟期,雌鱼每次产卵200枚左右,一生可产卵数千枚,斑马鱼所产之卵经24小时即可胚胎发育成熟,仔鱼期只有1个月。

基于石墨烯和量子点造太阳能电池

  俄罗斯大学和日本法政大学学者组成的一个国际小组开始启动在石墨烯和量子点基础上制造混合平面结构的工作。图片来源于网络  石墨烯拥有极高的导电能力,使它成为毫微电子学所需要的非常富有前景的材料。莫斯科物理工程学院纳米生物工程实验室学者伊戈尔·纳比耶夫说:“我们将开展科研工作,让人了解如何提高现有太阳

研究揭示基于强磁场调控石墨烯量子点的光学性质

  石墨烯量子点(GQDs)是一种小尺寸的二维纳米材料。近年来,因其稳定性、生物相容性、荧光可调性以及易被肾脏清除等特点,在癌症诊疗一体化中具有极大的应用,在生物医学领域引起了极大关注。现有应用于光热治疗的GQDs的光学吸收主要集中于近红外一区。然而,皮肤和组织的吸收以及散射使得近红外一区的激光穿

兰州化物所石墨烯量子点的应用开发取得新进展

  中国科学院兰州化学物理研究清洁能源化学与材料实验室低维材料与化学储能研究课题组在石墨烯量子点用于超级电容器应用方面取得新进展。研究工作相继发表在近期出版的Adv. Funt.Mater. (2013, 23, 4111-4122)和Nanoscale( 2013, 5, 6053-6062)

兰州化物所石墨烯量子点的应用开发取得新进展

  中国科学院兰州化学物理研究清洁能源化学与材料实验室低维材料与化学储能研究课题组在石墨烯量子点用于超级电容器应用方面取得新进展。研究工作相继发表在近期出版的Adv. Funt.Mater.和Nanoscale。   石墨烯量子点(Graphene quantum dot,GQDs)指尺寸

北京大学利用石墨烯量子点实现光控界面掺杂

  低维纳米材料由于在发光和电子输运等方面有着丰富的物理特性,得到了广泛关注。日前,北京大学方哲宇、朱星课题组利用石墨烯量子点(GQDs)等离激元实现了对单层MoS2的高效电荷掺杂以及发光光谱的动态调控,相关成果近期发表于《先进材料》。  单层danS2是一种直接带隙半导体材料,具有较高的光致荧光发

石墨烯量子点磁性复合纳米粒子分散固相微萃取

石墨烯量子点磁性复合纳米粒子分散固相微萃取-毛细管电泳法测定肉桂酸及其衍生物 肉桂酸及其衍生物是一种重要的香料, 广泛存在于多种中药材中, 是健胃、袪风、抗糖尿病的有效成分[1], 同时具有抗氧化性、抗微生物活性、抗癌性等重要的临床应用价值, 已被广泛应用于医药品和食品添加剂中[2, 3]。由于医药

首个石墨烯超导量子干涉装置面世

瑞士科学家在最新一期《自然·纳米技术》杂志上发表论文称,他们利用石墨烯,制造出了首个超导量子干涉装置,用于演示超导准粒子的干涉。最新研究有望促进量子技术的发展,也为超导研究开辟了新的可能性。 2004年石墨烯横空出世,自此引发广泛关注并获得大力发展。石墨烯是目前已知最薄、强度最高、导电导热性能最

斑马鱼出生就识数!

  意大利科学家发现,斑马鱼幼鱼在孵化后96小时里可以识别不同数量的黑条,研究者表示这一发现表明数字能力可能在新生斑马鱼中是与生俱来的。相关研究3月24日发表于《通讯—生物学》。  过去的研究表明,人类新生儿和新孵化的孔雀鱼、小鸡(孵化时脑已经高度发育的物种)具有数学能力。但在此之前,人们对新生时处

斑马鱼显微CT实验

斑马鱼作为传统的脊椎动物模型已经广泛应用于人类疾病和胚胎发育过程的研究,斑马鱼全基因已经完全清楚,与人类基因组有85%同源性,这意味着在斑马鱼身上进行的实验,其结果很多都适用于人类。斑马鱼与其他实验常用动物相比,具有较高的繁殖率和生长速率,并且其胚胎发育过程是在体外进行的,科研人员通过显微镜直接观察

斑马鱼基础研究

近期,我们收到了很多小伙伴提交的文献奖励申请,其中,有2篇成功吸引了小编的注意,这2篇文章的内容都是斑马鱼研究相关的。我们都知道,斑马鱼是一种常见的模式生物,但是市面上针对斑马鱼的抗体却非常少,我们不仅有一百多种斑马鱼抗体,而且还可以根据客户需求来进行定制生产。下面来看看这2篇文章吧。01标题:Sa

Science重要发现:炎症促进再生

  发表在最新一期(11月8日)《科学》(Science)杂志上的一篇报告揭示斑马鱼具有非凡的大脑修复能力秘密在于炎症。斑马鱼大脑的神经干细胞表达了一种炎症信号分子的受体,促使细胞增殖并发育成新神经。   约翰霍普金斯大学神经病学和神经科学教授明国丽(Guo-Li Ming,未参与该研究)说:

天然双层石墨烯内发现新奇量子效应

  由德国哥廷根大学领导的一个国际研究团队在最新一期《自然》杂志上发表论文称,他们在对天然双层石墨烯开展的高精度研究中,发现了新奇的量子效应,并从理论上对其进行了解释。这一系统制备简单,为载荷子和不同相之间的相互作用提供了新见解,有助于理解所涉及的过程,促进量子计算机的发展。  2004年,两位英国

斑马鱼胚胎DNA的制备

材料和试剂1.        蛋白酶K(罗氏03115836001)2.        1M的Tris,pH值8.33.        氯化钾4.        吐温20(10%,EMD4 biosciences,655207)5.        NP40(10%,Merck,492018)设备1.

斑马鱼胚胎细胞的培养

成纤维细胞饲养层 原代培养 细胞系             实验方法原理 通过用链酶蛋白酶除去绒毛膜、用添加成分的 FGF 培养液培养细胞和采用不同的胰蛋白酶消化

转基因斑马鱼的构建

实验概要本实验对斑马鱼导入含 EGFP的质粒,观察其在动物体内的表达情况,在斑马鱼体内,绿色荧光蛋白从原肠胚到出苗期均能在荧光显微镜下观察到绿色荧光。主要试剂EGFP、绿色荧光蛋白基因、pEGFP-N2载体、E.coli主要设备试管、试管架、可调式微量加样器、电泳仪、电泳槽、染色缸、42℃恒温水浴箱

斑马鱼基因编辑技术介绍

斑马鱼又叫蓝条鱼,因为其体表有暗蓝色和银色的类似于斑马一样的条纹而命名。斑马鱼属于鲤科鱼类,同属鲤科的还有我们十分熟悉的鲤鱼、鲫鱼等。斑马鱼的体型较小,成鱼体长约4-6厘米,而且成鱼常年产卵且产卵量大,可达300-1000粒,还是体外受精并发育,因此十分适合进行实验室的大规模养殖与筛选。斑马鱼这种原

斑马鱼背腹轴形成和Wnt通路调控机制研究获新进展

  经典Wnt信号通路是细胞内的主要信号传导机制之一,在脊椎动物早期胚胎发育和器官形成中起着重要作用,其活性的非正常变化与多种人体疾病密切相关。该通路的激活可促进b-catenin在细胞核内积累,调节多种下游基因的转录表达。然而,对该通路在脊椎动物重要器官发育与形成中作用的研究刚刚起步

新疆理化所纳米反应器限域合成石墨烯量子点研究获进展

  石墨烯量子点兼具石墨烯材料的优异性能和量子点材料的边界效应,因而呈现一系列新的特性,目前受到化学、物理、材料等各领域科学家的广泛关注。自被发现以来,关于这种新型零维材料的制备研究已取得一些重要进展,但如何简易获得尺寸可控、粒径均一、分散性良好的石墨烯量子点仍是一个挑战。  中国科学院新疆理化技术

南开大学:氧化石墨烯复合态毒理效应研究获进展

  日前,南开大学环境科学与工程学院本科生高越、方重组成科研团队,依托“国家级大学生创新创业训练计划”项目对氧化石墨烯的水生生物效应及其机制展开研究,该项目被评为“2017年本科创新项目特等奖”。  作为石墨烯类纳米材料,氧化石墨烯由于具有诸多优点,作为卫生医学、化学化工、电子产品、环境保护技术等的

斑马鱼色素细胞如何形成条带

  一项研究发现,斑马鱼的特征条带反映了这种动物的皮肤上的色素细胞的运动和它们之间的相互作用。尽管科研人员长久以来就注意到了数学模型可以准确地重现动物界的许多特征条带和斑点,动物图案背后的生物过程在很大程度上尚未得到解释。为了更好地理解这些过程,Hiroaki Yamanaka 和Shigeru

斑马鱼人类疾病模型的构建

  斑马鱼是唯一的经过大规模遗传筛选的脊椎动物物种。许多斑马鱼的哺乳动物同源基因已经被克隆,并且发现有相似的功能,证实了斑马鱼作为人类疾病模型的可行性。通过Tol2转座子技术、基因突变(插入诱变、ENU化学诱变)、基因敲除(TALEN,CRISPER)等技术,构建在特点靶点标记荧光蛋白的转基因品系及

斑马鱼20羟化二十碳四烯酸(20HETE)酶联说明

实验原理本试剂盒应用双抗体夹心法测定标本中斑马鱼20-羟化二十碳四烯酸(20-HETE)水平。用纯化的斑马鱼20-羟化二十碳四烯酸(20-HETE)抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入20-羟化二十碳四烯酸(20-HETE),再与HRP标记的20-羟化二十碳四烯酸(20-HETE

定向基因编辑改写斑马鱼的DNA

  斑马鱼是基因研究中一种常用的模式生物。现在科学家可以对它们的基因组进行定向的编辑。   据Nature近日报导,在对脊椎动物和人类疾病的研究中,斑马鱼是一种重要的模式生物。它的卵是透明的,在体外孵化,它的繁殖周期很短,生长速度快,这些都意味着,很适合在生物生存的条件下对它的胚胎进行密切研究。而

斑马鱼造血干细胞生成机理

法国家日前通过对斑马鱼胚胎进行即时监控,发现了其造血的生成机理。这一成果为医学界研究白血病疗法提供了新思路。该研究由法国国家中心和巴斯德研究所共同完成。研究人员在最新一期英国杂志上报告说,他们采用即时成像对斑马鱼的胚胎进行了观察。结果发现,斑马鱼胚胎主动脉的部分内皮细胞先是发生卷曲,随后蜷缩成一团,

斑马鱼平台助力HSP发病机理研究

遗传性痉挛性截瘫(HSP)又称家族性痉挛性截瘫,是一种神经系统退行性变性疾病。其病理改变主要是脊髓中双侧皮质脊髓束的轴索变性或脱髓鞘,以胸段最重。 临床表现为双下肢肌张力增高,腱反射活跃亢进,病理反射阳性,呈剪刀步态。2018年5月11日,中国国家卫生健康委员会等5部门联合制定了《第一批罕见病目录》

方案27.6-斑马鱼胚胎细胞的培养

成纤维细胞饲养层 原代培养 细胞系             实验方法原理 通过用链酶蛋白酶除去绒毛膜、用添加成分的 FGF 培养液培养细胞和采用不同的胰蛋白酶消化