如何区分AAS、AES、AFS三种光谱分析技术?

AAS(原子吸收光谱)、AES(原子发射光谱)、AFS(原子荧光光谱)是三种常见的光谱分析技术,在食品、化工、环境等领域具有广泛的用途,由于其原理相近,结构类似,很多初学者对于这三种技术难以参透,因此小编今天就带大家辨一辨这“光谱三兄弟”。 “光谱三兄弟”简介 1、AAS(原子吸收光谱): 基于气态的基态原子外层电子对紫外光和可见光的吸收为基础的分析方法。 当元素的特征辐射通过该元素的气态基态原子区时,部分光被蒸气中基态原子共振吸收而减弱,通过单色器和检测器测得特征谱线被减弱的程度,即吸光度,根据吸光度与被测元素的浓度成线性关系,从而进行元素的定量分析。 2、AES(原子发射光谱): 是利用物质在热激发或电激发下,每种元素的原子发射特征光谱来判断物质的组成并进行元素的定性与定量分析。 在正常状态下,原子处于基态,原子在受到热(火焰)或电(电火花)激发时,由基态跃迁到激发态,返回到基态时,发射出特征谱线。 3、......阅读全文

原子吸收,原子荧光以及原子发射的区别和联系

原子荧光光谱:原子荧光光谱是基于基态原子吸收特定波长光辐射的能量而被激发至高能态,受激原子在去激发过程中发射出的一定波长的光辐射,根据这一原理制成的可以检测元素含量的仪器叫原子荧光光谱仪(光度计),比如SK-2003A,线性宽度大于三个数量级,重复性小于百分之0.6%。原子发射光谱:原子在受到热或电

原子荧光,原子吸收和原子发射的区别和特点

原子在受到热或电的激发时,由基态跃迁到激发态,返回到基态时,发射出特征光谱叫做原子发射光谱,而根据处于激发态的待测元素原子回到基态时发射的特征谱线对待测元素进行分析的方法称为原子发射光谱法。ICP-AES的特点是可以进行多元素检测,选择性高,检出限低,准确度高。 原子荧光光谱是基于基态原子吸收特定

原子吸收,原子荧光以及原子发射的区别和联系

首先,共同点就是都属于原子光谱类的仪器。利用原理可以检测物质的组成。 不同点是首先是原理不同:发射光谱是原子在受到热或电的激发时,由基态跃迁到激发态,返回到基态时,发射出特征光谱;原子荧光光谱是基于基态原子吸收特定波长光辐射的能量而被激发至高能态,受激原子在去激发过程中发射出的一定波长的光辐射,根

原子发射,原子吸收和原子荧光光谱是怎么产生的

从本质上说都是经由原子的能级跃迁产生的。不同的是原子发射光谱研究的是待测元素激发的辐射强度,原子吸收光谱法是研究原子蒸气对光源共振线的吸收强度,是吸收光谱。原子荧光是研究待测元素受激发跃迁所发射的荧光强度,虽激发方式不同,仍属于发射光谱。因为原子荧光光谱法既有原子发射光谱和吸收的特点所以具有二者的优

AAS(原子吸收光谱)、AES(原子发射光谱)、AFS(原子荧光光谱)...

AAS(原子吸收光谱)、AES(原子发射光谱)、AFS(原子荧光光谱)异同点AAS(原子吸收光谱)、AES(原子发射光谱)、AFS(原子荧光光谱)是三种常见的光谱分析技术,在食品、化工、环境等领域具有广泛的用途,由于其原理相近,结构类似,很多初学者对于这三种技术难以参透,本文就带大家辨一辨这“光谱三

比较原子发射光谱,原子吸收光谱和原子荧光光谱的异同

仪器构造方面AES AAS AFS 同属于光谱类仪器 都有光源 进样器 原子化器 检测器 不同处在于AES可以不需要光源 其他两种必须有光源AAS 的光源处于主光路上 AFS光源需要和主光路分离进样器部分 大同小异 采取空压机配合雾化器 或 蠕动泵等方法进样 用以保证样品的连续稳定原子化器部分 AF

原子发射光谱,原子吸收光谱和原子荧光光谱怎么产生的

从本质上说都是经由原子的能级跃迁产生的。不同的是原子发射光谱研究的是待测元素激发的辐射强度,原子吸收光谱法是研究原子蒸气对光源共振线的吸收强度,是吸收光谱。原子荧光是研究待测元素受激发跃迁所发射的荧光强度,虽激发方式不同,仍属于发射光谱。因为原子荧光光谱法既有原子发射光谱和吸收的特点所以具有二者的优

原子吸收和原子荧光的区别

火焰原子吸收属于吸收光谱,氢化法原子荧光属于发射光谱。两者原理不同,可检测元素不同。不过需要注意近些年发展的火焰原子荧光仪器。火焰原子荧光也可以检测金、银、铜等元素。并且在金元素的检测上,灵敏度和稳定性优于原子吸收。例如市面上的矿山测金仪就属于火焰原子荧光。不过原子吸收应用范围更广泛,因为可检测元素

原子吸收和原子荧光的区别

火焰原子吸收属于吸收光谱,氢化法原子荧光属于发射光谱。两者原理不同,可检测元素不同。不过需要注意近些年发展的火焰原子荧光仪器。火焰原子荧光也可以检测金、银、铜等元素。并且在金元素的检测上,灵敏度和稳定性优于原子吸收。例如市面上的矿山测金仪就属于火焰原子荧光。不过原子吸收应用范围更广泛,因为可检测元素

原子荧光和原子吸收的区别

原子吸收分光光度法是基于基态原子对共振光的吸收:而原子荧光光度是处于激发态原子向基态跃迁,并以光辐射形式失去能量而回到基态。而且这个激发态是基态原子对共振光吸收而跃迁得来的。因此,原子荧光包含了两个过程:吸收和发射。色散系统:较之原子吸收荧光谱线更少,光谱干扰也少,所以可以用低分辨力的分光系统甚至于

原子吸收和原子荧光的区别

原子吸收和原子荧光的区别原子荧光光谱法是通过测量待测元素的原子蒸气在辐射能激发下产生的荧光发射强度,来确定待测元素含量的方法.  气态自由原子吸收特征波长辐射后,原子的外层电子从基态或低能级跃迁到高能级经过约(10的负八次方)秒,又跃迁至基态或低能级,同时发射出与原激发波长相同或不同的辐射,称为原子

原子吸收和原子荧光的区别

火焰原子吸收属于吸收光谱,氢化法原子荧光属于发射光谱。两者原理不同,可检测元素不同。不过需要注意近些年发展的火焰原子荧光仪器。火焰原子荧光也可以检测金、银、铜等元素。并且在金元素的检测上,灵敏度和稳定性优于原子吸收。例如市面上的矿山测金仪就属于火焰原子荧光。不过原子吸收应用范围更广泛,因为可检测元素

原子吸收和原子荧光的区别

原子吸收和原子荧光的区别原子荧光光谱法是通过测量待测元素的原子蒸气在辐射能激发下产生的荧光发射强度,来确定待测元素含量的方法.  气态自由原子吸收特征波长辐射后,原子的外层电子从基态或低能级跃迁到高能级经过约(10的负八次方)秒,又跃迁至基态或低能级,同时发射出与原激发波长相同或不同的辐射,称为原子

原子吸收和原子荧光的区别

火焰原子吸收属于吸收光谱,氢化法原子荧光属于发射光谱。两者原理不同,可检测元素不同。不过需要注意近些年发展的火焰原子荧光仪器。火焰原子荧光也可以检测金、银、铜等元素。并且在金元素的检测上,灵敏度和稳定性优于原子吸收。例如市面上的矿山测金仪就属于火焰原子荧光。不过原子吸收应用范围更广泛,因为可检测元素

原子吸收和原子荧光的区别

火焰原子吸收属于吸收光谱,氢化法原子荧光属于发射光谱。两者原理不同,可检测元素不同。不过需要注意近些年发展的火焰原子荧光仪器。火焰原子荧光也可以检测金、银、铜等元素。并且在金元素的检测上,灵敏度和稳定性优于原子吸收。例如市面上的矿山测金仪就属于火焰原子荧光。不过原子吸收应用范围更广泛,因为可检测元素

原子吸收和原子荧光的区别

原子吸收和原子荧光的区别原子荧光光谱法是通过测量待测元素的原子蒸气在辐射能激发下产生的荧光发射强度,来确定待测元素含量的方法.  气态自由原子吸收特征波长辐射后,原子的外层电子从基态或低能级跃迁到高能级经过约(10的负八次方)秒,又跃迁至基态或低能级,同时发射出与原激发波长相同或不同的辐射,称为原子

原子吸收和原子荧光的区别

异:原子荧光法是利用基态原子吸收辐射至高能态,再产生的荧光来判断元素组成,原子吸收法是利用原子吸收特定频率的光辐射判断元素组成。同:都是利用原子的光谱判断。原子吸收光谱法 (AAS)是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。由于各种原子中电子的能级不

原子吸收和原子荧光的区别

火焰原子吸收属于吸收光谱,氢化法原子荧光属于发射光谱。两者原理不同,可检测元素不同。不过需要注意近些年发展的火焰原子荧光仪器。火焰原子荧光也可以检测金、银、铜等元素。并且在金元素的检测上,灵敏度和稳定性优于原子吸收。例如市面上的矿山测金仪就属于火焰原子荧光。不过原子吸收应用范围更广泛,因为可检测元素

原子荧光和原子吸收的区别

原子荧光和原子吸收都是光谱,原理稍微有些不同。原子荧光的特长是测量As,Se,Hg等一些过度元素和特殊的金属元素。原子吸收分火焰和石墨炉两种,主要测量重金属元素,石墨炉原子吸收测量重金属元素也可以达到ug/L级别。原子荧光和原子吸收在实验室里没有ICPMS的情况下作为互补,可以测量大部分金属元素和过

原子发射光谱、原子吸收光谱

  原子吸收光谱是原子发射光谱的逆过程。基态原子只能吸收频率为ν=(Eq-E0)/h的光,跃迁到高能态Eq。因此,原子吸收光谱的谱线也取决于元素的原子结构,每一种元素都有其特征的吸收光谱线。  原 子的电子从基态激发到最接近于基态的激发态,称为共振激发。当电子从共振激发态跃迁回基态时,称为共振跃迁。

如何正确区别原子荧光和原子吸收?

原子吸收分光光度法是基于基态原子对共振光的吸收:而原子荧光光度是处于激发态原子向基态跃迁,并以光辐射形式失去能量而回到基态。而且这个激发态是基态原子对共振光吸收而跃迁得来的。因此,原子荧光包含了两个过程:吸收和发射。色散系统:较之原子吸收荧光谱线更少,光谱干扰也少,所以可以用低分辨力的分光系统甚至于

原子吸收和原子发射的本质区别

原子吸收和原子发射的谱线是一致的。原子吸收是吸收谱线,电磁波穿透原子蒸汽时,特定波长被吸收改变自身电子能级,然后向各方向发射,原方向的该波长电磁波就减少了。原子发射是受激发射谱线,受热或电激发,原子的电子激发到高能轨道,然后放出特定波长的电磁波回到低能轨道,通常是基态,可测定所释放的电磁波频率。

原子吸收和原子荧光灯的区别

原子吸收和原子荧光灯的区别? 1. 一般原子吸收的灯电流比较低,一般情况工作电流不会大于10毫安。原子荧光的灯电流较大 2. 原吸,要求发射线光谱带线宽应远小于吸收线带宽,一般为0.0005-0.002nm,越狭越好. 荧光,并不要求发射带线宽越锐越好,而是要求发射线带宽等于或小于特征波长线宽即可,

原子吸收(发射)光谱法

方法提要试样经氢氟酸、硫酸分解,在!(H2SO4)=1%介质中,在原子吸收光谱仪上,使用空气-乙炔火焰,以硫酸钾作消电离剂,于波长670.8nm、780.0nm、852.1nm处,分别测定锂、铷、铯的吸光度或发射强度。一般常见元素均不干扰测定。测定范围0.001%~4.00%。仪器原子吸收光谱仪。试

原子吸收(发射)光谱法

方法提要试样经氢氟酸、硫酸分解,在!(H2SO4)=1%介质中,在原子吸收光谱仪上,使用空气-乙炔火焰,以硫酸钾作消电离剂,于波长670.8nm、780.0nm、852.1nm处,分别测定锂、铷、铯的吸光度或发射强度。一般常见元素均不干扰测定。测定范围0.001%~4.00%。仪器原子吸收光谱仪。试

原子吸收(发射)光谱法

方法提要试样经氢氟酸、硫酸分解,在!(H2SO4)=1%介质中,在原子吸收光谱仪上,使用空气-乙炔火焰,以硫酸钾作消电离剂,于波长670.8nm、780.0nm、852.1nm处,分别测定锂、铷、铯的吸光度或发射强度。一般常见元素均不干扰测定。测定范围0.001%~4.00%。仪器原子吸收光谱仪。试

原子吸收光谱分析

概述: 原子吸收光谱法是根据蒸气相中待测元素的基态原子对其共振辐射的吸收进行定量分析的方法。1、原子吸收光谱法的优点(1)、检出限低、灵敏度高(2)、精密度高、分析速度快(3)、选择性好,光谱干扰少:原子吸收谱线少,一般没有共存元素的光谱重叠。(4)、应用范围广:可测定元素达70多种,不仅可以测定金

原子吸收光谱分析

概述: 原子吸收光谱法是根据蒸气相中待测元素的基态原子对其共振辐射的吸收进行定量分析的方法。1、原子吸收光谱法的优点(1)、检出限低、灵敏度高(2)、精密度高、分析速度快(3)、选择性好,光谱干扰少:原子吸收谱线少,一般没有共存元素的光谱重叠。(4)、应用范围广:可测定元素达70多种,不仅可以测定金

原子发射光谱和原子荧光光谱的区别

根本差别在于激发基态原子的外层电子跃迁的方式,发射光谱属于热致激发,即基态原子吸收热量后,其外层电子跃迁致较高能级,然后跃迁回较低能态发射的特征谱线;分子荧光则是属于光致激发,基态原子受光辐射后,其外层电子跃迁致较高能级,然后跃迁回较低能态发射的特征谱线。

原子吸收光谱和原子发射光谱区别

      原子吸收光谱是原子发射光谱的逆过程。基态原子只能吸收频率为ν=(Eq-E0)/h的光,跃迁到高能态Eq。因此,原子吸收光谱的谱线也取决于元素的原子结构,每一种元素都有其特征的吸收光谱线。  原子的电子从基态激发到最接近于基态的激发态,称为共振激发。当电子从共振激发态跃迁回基态时,称为共振