高温抑制植物免疫但促进开花的传代记忆表观遗传机制

2月18日,Cell Research 杂志在线发表了中国科学院分子植物科学卓越创新中心/植物生理生态研究所何祖华研究组与中国科学院遗传与发育生物学研究所曹晓风研究组合作完成的研究论文,题目为An H3K27me3 demethylase-HSFA2 regulatory loop orchestrates transgenerational thermomemory in Arabidopsis。论文揭示了一个正向反馈循环途径维持植物对高温的传代记忆的新机制。 全球气候变化带来的频繁高温胁迫是植物面临的主要非生物胁迫之一,严重影响了植物的生长发育和作物产量。为了适应环境温度的变化,植物进化出复杂的遗传和表观遗传机制以响应高温并随之调整生长发育。有些高温响应能通过减数分裂传递给下一代植株,即使后代没有受到逆境影响,仍然具有记忆标志,但其中具体的机制尚不清楚。何祖华研究组此前通过一个盒子的免疫受体NRG1的研究揭示了高温通过......阅读全文

高温抑制植物免疫但促进开花的传代记忆表观遗传机制

  2月18日,Cell Research 杂志在线发表了中国科学院分子植物科学卓越创新中心/植物生理生态研究所何祖华研究组与中国科学院遗传与发育生物学研究所曹晓风研究组合作完成的研究论文,题目为An H3K27me3 demethylase-HSFA2 regulatory loop orches

高温抑制植物免疫但促进开花的传代记忆表观遗传机制

  2月18日,Cell Research 杂志在线发表了中国科学院分子植物科学卓越创新中心/植物生理生态研究所何祖华研究组与中国科学院遗传与发育生物学研究所曹晓风研究组合作完成的研究论文,题目为An H3K27me3 demethylase-HSFA2 regulatory loop orches

植物利用表观遗传记忆适应气候变化

人们已经知道,动物能迅速适应不利的环境条件,以保证生存。现在,越来越多的证据表明,植物也可以。现在,科学家详细介绍了植物是如何迅速适应气候变化不利影响的,以及它们是如何将这些适应能力遗传给后代的。相关研究11月18日发表于《植物科学趋势》期刊。 “有一天,我在想,一个人的生活方式和经历会如何影响

什么是表观遗传?

表观遗传学是研究基因的核苷酸序列不发生改变的情况下,基因表达的可遗传的变化的一门遗传学分支学科。表观遗传的现象很多,已知的有DNA甲基化(DNA methylation),基因组印记(genomic imprinting),母体效应(maternal effects),基因沉默(gene silen

遗传发育所在植物着丝粒表观遗传学研究中取得进展

  植物着丝粒含有大量的重复序列和反转座子,结构复杂并受表观遗传学调控。中科院遗传与发育生物学研究所韩方普实验室长期从事植物着丝粒的表观遗传学研究,曾在植物中首次发现着丝粒的失活现象并初步分析失活着丝粒的调控机制。   由于着丝粒的特殊表观遗传学调控机制,植物着丝粒的DNA序列暂不能直接用于植物人

华南植物园在植物叶片发育表观遗传调控研究中获进展

  组蛋白去乙酰化酶(HDAC)在染色体的结构修饰和基因表达调控中发挥着重要的作用。HDAC通过去乙酰化作用移除核心组蛋白N-末端的乙酰基,增加 DNA与组蛋白之间的引力,使松弛的核小体变得十分紧密,从而抑制基因转录的起始与表达。研究表明,HDAC在植物生长发育过程中发挥重要调控作用。 AS

曹雪涛院士J-Immunol解析表观遗传与免疫

  来自浙江大学医学院、中国医学科学院、第二军医大学的研究人员证实,组蛋白赖氨酸甲基转移酶Ezh1通过抑制Tollip,促进了TLR触动炎症细胞因子生成。相关成果公布在近期的The Journal of Immunology杂志上。 我国著名的免疫学家曹雪涛(Xuetao Cao)院士是这篇论文的通

研究揭示抗病毒免疫应答新型表观遗传机制

  中国工程院院士曹雪涛团队发现,DNA甲基化酶Dnmt3a能使天然免疫细胞针对病毒感染处于一种敏感状态,一旦识别病毒入侵就可以显著产生干扰素和启动抗病毒天然免疫反应,该发现揭示了抗病毒免疫应答新型表观遗传机制,也为病毒感染性疾病防治提出了新的潜在分子靶标。成果近日发表于《自然—免疫学》。  树突状

华南植物园表观遗传相关研究取得新进展

  近年来,随着大量表观遗传现象的发现与报道,植物表观遗传学已经成为植物分子生物学的研究热点。表观遗传修饰不改变生物体DNA的序列,通过DNA的甲基化、组蛋白修饰和染色质重塑等途径调节基因的表达。其中,组蛋白修饰方式包括组蛋白的乙酰化、甲基化、磷酸化和泛素化等。组蛋白甲基化水平受组蛋白甲基转移酶和组

植物所揭示水稻籽粒大小表观遗传调控新机制

  水稻籽粒大小决定稻米的产量和外观品质,并受多个数量性状位点(QTLs)的控制;其中,编码组蛋白乙酰化酶的GRAIN WEIGHT 6a(GW6a)是水稻籽粒大小和产量的正向调节因子。目前对于GW6a依赖的基因调控网络尚不清楚。在拟南芥中,泛素受体DA1通过调控细胞增殖期来控制种子和器官的大小,然

生科院植物春化作用表观遗传机制研究取得重要进展

  10月26日,中国科学院上海生命科学研究院上海植物逆境生物学研究中心何跃辉研究组,以Embryonic epigenetic reprogramming by a pioneer transcription factor in plants为题的研究论文,在线发表在Nature上。2016年12

什么是表观遗传调节?

中文名称表观遗传调节英文名称epigenetic regulation定  义与DNA排列顺序的变化无关的,调节基因表达的频率、速度或者表达度的过程。如DNA甲基化、组蛋白修饰等。这种调节不能通过种系或生殖细胞传递,但可通过细胞分裂传给子代,在静止细胞的细胞质中也能稳定地自我繁殖。这种调节的失误或减

表观遗传研究指南(二)

  今年九月,对于基因组研究者们来说是一个具有纪念意义的月份,因为美国人类基因组研究院(NHGRI)资助的ENCODE项目在Nature,Genome Biology,Genome Research等杂志上公布了三十多份论文,还有在Science,Cell,以及the Journal of Bi

表观遗传学修饰

组蛋白修饰 表观遗传学是指表观遗传学改变 (DNA 甲基化、组蛋白修饰和非编码 RNA 如 miRNA) 对 表观基因组基因表达的调节,这种调节不依赖基因序列的改变且可遗传表观。因素如 DNA 甲基化、组蛋白修饰和 miRNA 是对环境刺激因素变化的反映,这些表观遗传学因素相互作用以调节基因

遗传发育所在植物着丝粒形成及其表观遗传学研究中获进展

  植物着丝粒含有大量的重复序列和反转座子,结构复杂并受表观遗传学调控。中国科学院遗传与发育生物学研究所韩方普研究组长期从事植物着丝粒的表观遗传学研究,曾在植物中首次发现着丝粒的失活现象并初步分析失活着丝粒的调控机制可能与DNA甲基化状态相关。由于着丝粒的特殊表观遗传学调控机制,植物着丝粒的DNA序

曹雪涛院士综述文章:当免疫遇上表观遗传

  近日,曹雪涛(Xuetao Cao)院士和第二军医大学的鲍嫣(Yan Bao)博士,发表了一篇题为“Epigenetic Control of B Cell Development and B-Cell-Related Immune Disorders”的综述文章,探讨了参与B细胞发育和B细胞相

解析了康复者免疫记忆形成的表观遗传机制

  2021年6月9日,Nature Cell Biology在线发表了题为Single-cell epigenomic landscape of peripheral immune cells reveals establishment of trained immunity in individ

上海生科院发现调控植物开花的表观遗传新机制

  11月8日,《自然-遗传学》(Nature Genetics)杂志在线发表了中国科学院上海生命科学研究院植物逆境生物学研究中心何跃辉研究组与杜嘉木研究组合作完成的题为A cis cold memory element and a trans epigenome reader mediate Po

植物所揭示种子休眠与萌发的表观遗传调控机制

  种子休眠与萌发是植物由生殖生长过渡到营养生长的重要发育转变进程,涉及大量基因的激活或者沉默。组蛋白修饰介导的表观遗传基因转录调控可能在其中发挥关键作用,但其分子机制尚不完全清楚。  中国科学院植物研究所刘永秀研究组利用遗传和生理生化等手段,揭示了拟南芥SNL1和SNL2调控种子休眠和萌发的分子机

为植物表观遗传研究打开一扇门

  DNA测序技术发明之后,科学家们认为自己可以通过DNA全基因组测序解析生命的全部密码。渐渐的,他们发现有些重要信息并不编码于DNA序列里面,即便基因序列没有发生变化,生物体的表型也可以改变。这种研究被称为“表观遗传学”,继传统遗传学之后,表观遗传学如火如荼地发展起来了。  中科院院士、中科院遗传

多篇文章聚焦免疫应答背后的表观遗传相互作用

   国际人类表观基因组联盟(IHEC)近日在《Cell》等杂志上发表了40多篇论文,为人们呈现了原代组织的表观遗传数据集,以及复杂人类疾病的细胞机制分析。其中,几个团队开始解析免疫细胞发育、谱系确定和分化,以及免疫应答背后的复杂表观遗传相互作用。  在一项发表于《Immunity》的研究中,德国的

浙大曹雪涛院士Cell子刊解析表观遗传与免疫

  来自浙江大学医学院、第二军医大学和复旦大学等处的研究人员发现,组蛋白甲基转移酶Ash1l通过诱导泛素编辑酶A20,抑制了IL-6生成及炎症性自身免疫疾病。这一研究在线发表在9月5日的《免疫》(Immunity)杂志上。   文章的通讯作者是现任职浙江大学医学院和第二军医大学的曹雪涛(Xueta

表观遗传调节的概念介绍

中文名称表观遗传调节英文名称epigenetic regulation定  义与DNA排列顺序的变化无关的,调节基因表达的频率、速度或者表达度的过程。如DNA甲基化、组蛋白修饰等。这种调节不能通过种系或生殖细胞传递,但可通过细胞分裂传给子代,在静止细胞的细胞质中也能稳定地自我繁殖。这种调节的失误或减

表观遗传“淘金热”袭来

  一些奇思妙想似乎会突然冒出来,不过2008年,Chuan He却有意地寻找这样一个想法。美国国立卫生研究院当时刚刚启动资金支持高风险、高影响项目,伊利诺伊州芝加哥大学化学家He打算申请。不过,他首先需要一个好的领域。  他一直在研究修复损伤DNA的蛋白家族,他开始怀疑这些酶可能也会对RNA产生作

Nature发布表观遗传重要发现

  营养繁殖是无性繁殖的一种形式,常用于商业化大规模生产园林植物和树,因为它能够实现高性能、基因相同个体的快速繁殖。然而对于某些物种,营养繁殖有着严苛的要求,需要技术先进的无菌培养来生成可以发育为苗木的克隆胚胎。而有一部分以这种方式繁殖的植物会因遗传变异或表观遗传改变显示出发育异常。  在9月9日的

Cell发布表观遗传重要成果

  为了将两米长的DNA分子装入到只有几千分之一毫米大小的细胞核中,DNA长片段必须强力地紧密压缩。表观遗传学标记维持着这些称作异染色体的部分。来自马克思普朗克免疫生物学和表观遗传学研究所的科学家们现在进一步发现了异染色质形成必需的两种机制。相关论文发布在近期的《细胞》(Cell)杂志上。   由

Science:祖母的表观遗传“原罪”

  如果一名孕妇营养不良,由于所谓的“表观遗传”效应,她的孩子罹患肥胖症和2型糖尿病的风险要高于一般人。一项小鼠新研究证实,妊娠期的这种营养“记忆”还可通过雄性后代的精子传递给下一代,提高她们孙辈的疾病风险。换句话说,其印证了一句老的格言“你祖母的饮食都会影响你”。这项研究还对表观遗传效应如何代代相

-Science:父亲“原罪”之表观遗传

  如果你患有糖尿病、癌症或甚至有心脏问题,或许你应该将其归罪于父亲或甚至祖父的行为或环境。近年来,科学家们已证实甚至在母亲怀上后代之前,父亲的生活经历包括食物、药物、暴露于毒性产物、压力等都可以影响他的孩子、甚至孙子的发育和健康。  然而,尽管科学家们在这一领域已开展了十年的研究工作,对于延续数代

什么是表观遗传学

是研究不涉及DNA序列改变的基因表达和调控的可遗传修饰,即探索从基因演绎为表型的过程和机制的一门新兴学科。遗传学是指基于基因序列改变所 致基因表达水平变化,如基因突变、基因杂合丢失和微卫星不稳定等。而表观遗传学则是指基于非基因序列改变所致基因表达水平变化,如DNA甲基化和染色质构象变化等;表观基因组

污染改变表观遗传信息

  美国《科学美国人》杂志日前刊登了华盛顿州立大学生殖生物学中心主任迈克尔·斯金纳的研究文章《一种新的遗传》。这项研究通过动物实验发现,特定污染物会引发可导致疾病或生殖问题的表观遗传修饰,而这是在不改变动物DNA序列的情况下发生的。  迈克尔·斯金纳的实验室以及其他一些实验室,主要针对大鼠和小鼠的一