Antpedia LOGO WIKI资讯

脑细胞类型中增强子遗传变异或预测精神/神经疾病风险

可能有人认为,大多数遗传相关疾病的主要原因来自编码DNA的突变---基因组编码区域的改变可以直接导致对健康人体重要的特定蛋白的表达发生变化。但是,人类DNA的大部分是非编码DNA,即不直接翻译成功能性蛋白的DNA区域。这些非编码DNA区域包含称为增强子的调节性序列元件,这些序列元件可以改变特定蛋白被制造的可能性。 在一项新的研究中,来自美国加州大学圣地亚哥分校医学院和沙克生物研究所等研究机构的研究人员如今在一些增强子中发现的特定遗传变异决定着蛋白是否在大脑的特定细胞类型中表达,并且可能在人们患精神疾病或神经疾病的风险中起作用。他们使用从六名患者中提取出的健康组织,分离出四种不同类型的脑细胞---神经元、小胶质细胞、少突胶质细胞和星形胶质细胞,然后研究了每种细胞类型的增强子中与疾病相关的遗传变异,以寻找可能与疾病风险相关的变异。相关研究结果于2019年11月14日在线发表在Science期刊上,论文标题为“Brain cel......阅读全文

CRISPR后起之秀《Nature》最新发现20,000个平行实验”发现增强子

  最开始大家都以为是“垃圾”DNA的基因组“暗物质”近年来备受关注,增强子就是其中之一,来自加州大学旧金山分校的一组研究人员修改了现有的基因编辑CRISPR技术,用以来寻找增强子,他们的方法并不是编辑增强子,而是利用一种称为CRISPRa(CRISPR activation)的工具,搜寻影响T细胞

CRISPR后起之秀:“20,000个平行实验”发现增强子

  我们人体每个细胞的基因组中都有大致相同的22,000个基因,但每个细胞采用的都是这些基因的不同组合,根据不同的需求开启或关闭某个基因。就是这些基因的表达以及抑制模式决定了细胞会成为什么细胞,是肾脏细胞,脑细胞,皮肤细胞,还是心脏细胞。  要想操控这些转换模式,我们的基因中就必须有调节序列,比如“

Cell重要论文:扣动干细胞分化的扳机

  不同于肌肉细胞或神经细胞,胚胎干细胞被定义为能够承担所有细胞的功能。科学家们将这种灵活性称之为“多能性”,这意味着随着生物体的发育,干细胞必须随时准备激活各种各样的基因表达程序,将它们转为血液细胞、脑细胞或肾细胞。   在12月27日的《细胞》(Cell)杂志上,来自Stowers研究所Ali

一文了解2019年11月29日Science期刊精华

  本周又有一期新的Science期刊(2019年11月29日)发布,它有哪些精彩研究呢?让小编一一道来。  1.Science:利用机器引导设计方法优化AAV病毒衣壳  doi:10.1126/science.aaw2900  天然的AAV并不特异性地靶向患病的细胞和组织,它们可以被免疫系统识别,

张锋Nature发布CRISPR新成果

  波士顿儿童医院癌症及血液疾病中心的研究人员发现,改变一小段DNA可以避开镰状细胞病(SCD)背后的遗传缺陷。这一发布在《自然》(Nature)杂志上的新发现,为开发出一些基因编辑方法来治疗SCD和诸如地中海贫血等其他的血红蛋白疾病开辟了一条途径。  Dana-Farber/波士顿儿童医院的Stu

《Nature》7月最受关注的十篇论文

  英国著名杂志《Nature》周刊是世界上最早的国际性科技期刊,自从1869年创刊以来,始终如一地报道和评论全球科技领域里最重要的突破。其办刊宗旨是“将科学发现的重要结果介绍给公众,让公众尽早知道全世界自然知识的每一分支中取得的所有进展”。近期《Nature》下载论文最多的十篇文章(2013年6月

科学家有望破解占比98%的人类基因组暗物质的奥秘

  2003年研究人员完成了人类基因组计划项目,共对人类基因组中所有30亿个碱基对进行了测序,很多人认为我们机体的DNA是一本开放的百科全书,但一个令人困惑的问题很快也会出现,尽管科学家们对这本书进行了翻译,但仅仅只是解释了其中很少一部分内容。  机体中有高达98%的DNA并不会编码产生蛋白质,很多

Cell重要论文:解密第六种碱基

  人体的几乎每个细胞都携带着一份完整的人类基因组。那么人类眼中的感光细胞为何会与心脏或脾脏的细胞如此的不同?   答案当然是因为每种细胞类型只选择性表达了一套独特的基因,而主动沉默了与它的功能无关的基因。科学家们很早以前就知道,那样的基因沉默是借助于对DNA碱基胞嘧啶的化学修饰,生成称作5-甲基

Nature发布重大成果:首张人基因活性图谱

  报道:由大型国际性协会研究人员组成的一个研究组今日公布了人体内主要细胞和组织中基因作用方式的第一个全面,详细的图谱。这一发现描绘了调控基因活性的复杂网络,也提供了在疾病中扮演重要作用的基因的新信息。   “我们第一次能够确定基因组中哪些区域在发生疾病的时候会被激活,哪些区域在正常情况下被激活了

ASHG 2017 | 基因组中的大片段重复让人类与众不同

  美国人类遗传学协会(ASHG)2017年会于本周在佛罗里达州奥兰多举行。这是遗传学界的一大盛事,每年吸引数千名科学家参加。在会议上,他们介绍遗传学各个方面的研究进展。  10月17日,加州大学戴维斯分校的Paulina Carmona-Mora介绍称,人类基因组中的大片段非编码DNA的重复可能造

“化学鸡尾酒”重编程自体细胞,有望治疗心脏、神经类疾病

  利用小分子诱导细胞重编程,使其具备多能干细胞性能,并分化成具备功能的心肌细胞、神经干细胞,这是著名干细胞学者丁胜团队近期所取得的杰出成就。相关学术成果也先后在最新一期《Science》、《Cell Stem Cell》期刊发表。  化学诱导细胞重编程方法避开基因操作,而是利用小分子与细胞内源因子

Nature子刊:CRISPR发现表观遗传对染色体的影响

  *本研究所使用的靶向表观基因组编辑技术由赛业生物提供   染色质的3D结构会随着细胞的生活周期而变化,对我们人体的健康和疾病发生产生重要的影响。近年来随着新技术的发展,科学家们发现染色质折叠让一些DNA片段彼此靠近并发生互作,他们将这样的区域称为拓扑相关结构域TAD。大脑中TAD结构与神经精神

运动影响学习与记忆能力动物实验的研究进展(三)

4.1 与LTP间接相关的物质 4.1.1 细胞凋亡学习与记忆是大脑主要的高级神经功能之一,是由不同而又紧密联系的神经元共同作用的结果。因此,保持神经元的健康和脑细胞的可塑性是学习和记忆的先决条件。已有研究报道,大鼠认知功能受损可能与海马神经元的凋亡有关,脑细胞过早凋亡可引发脑萎缩、老年痴

Nature子刊:CRISPR发现表观遗传对染色体的影响

染色质的3D结构会随着细胞的生活周期而变化,对我们人体的健康和疾病发生产生重要的影响。近年来随着新技术的发展,科学家们发现染色质折叠让一些DNA片段彼此靠近并发生互作,他们将这样的区域称为拓扑相关结构域TAD。大脑中TAD结构与神经精神疾病的患病风险息息相关,但这一研究领域仍存在许多未解之谜。来自西

Nature子刊:CRISPR发现表观遗传对染色体的影响

  *本研究所使用的靶向表观基因组编辑技术由赛业生物提供   染色质的3D结构会随着细胞的生活周期而变化,对我们人体的健康和疾病发生产生重要的影响。近年来随着新技术的发展,科学家们发现染色质折叠让一些DNA片段彼此靠近并发生互作,他们将这样的区域称为拓扑相关结构域TAD。大脑中TAD结构与神经精神

大脑中非常规的表观遗传现象

  胞嘧啶甲基化(mC)是对DNA的修饰,进而调节多种生物功能,如生长发育、肿瘤、以及基因印迹。在绝大多数哺乳动物躯体组织中,当胞嘧啶在一个二核苷酸序列中,并且其后跟着鸟嘌呤(G)时出现mC。同时这些位点绝大多数出现了甲基化(mCG)。然而,在成年哺乳动物大脑,在非CG序列中非常规的胞嘧啶甲基化出现