Antpedia LOGO WIKI资讯

科学家有望破解占比98%的人类基因组暗物质的奥秘

2003年研究人员完成了人类基因组计划项目,共对人类基因组中所有30亿个碱基对进行了测序,很多人认为我们机体的DNA是一本开放的百科全书,但一个令人困惑的问题很快也会出现,尽管科学家们对这本书进行了翻译,但仅仅只是解释了其中很少一部分内容。 机体中有高达98%的DNA并不会编码产生蛋白质,很多基因组暗物质被认为是一些非功能的进化残留物,然而在这些非编码DNA中隐藏了很多至关重要的调节性原件,其能够控制数千个基因的活性,此外,这些原件在多种疾病发生中也扮演着非常关键的角色,比如癌症、心脏病、自闭症等,同时这些原件也能为科学家们开发新型疗法提供新的线索。 为了绘制图谱并且解释人类基因组中功能性序列的功能,2月2日美国国立卫生研究院发布了一项资金用于资助5个有特色的研究中心,其中就包括旧金山的两个研究中心,旨在研究这些调节性原件如何影响基因表达乃至影响基因的行为。这项研究计划中,研究人员将会利用最新的研究技术,比如基因编辑技术......阅读全文

科学家揭开“垃圾”DNA的神秘角色!

  生物学家们在很长一段时间里都认为,既然几乎所有具体的生理机能都要由蛋白质来完成,那么不编码蛋白质的DNA应该是没有用的,可以称为“垃圾DNA”;而且人类基因组项目发现人的基因组中仅有1.5%的序列是给蛋白质编码的,其余的98.5%的序列是以前认为的“垃圾”DNA。  此前研究人员进行了一项名为E

出人意料的新才能:非编码RNA

  在《来自基因组暗物质的lncRNA、ciRNA和miRNA》一文中我们提到:人类基因组中也存在大量被称为基因组“暗物质(dark matter)”的非编码序列,包括基因间非编码序列、内含子非编码序列等。所谓基因组“暗物质”,其实就是基因组中的非编码RNA——不包含用于制造蛋白质的版图,构成了超过

陈润生院士:精准医学才刚刚上路

   自从精准医学成为大众热词以后,大家认为我们现在什么都可以精准,医学很容易精准了,但是我个人的观点是,精准医学虽然从本质上可能带来变革,可能引导新的产业的发展,也许产业规模是巨大的,但是现在才刚刚上路,才刚刚开始。因为在精准医学的概念下,我们目前依然存在着巨大的挑战,依然存在着巨大的困难。  为

利用CRISPR研究基因组“暗物质”

  超过98%的人类基因组由非编码基因组成。这些非编码基因被称为基因组的“暗物质”,它们能调控编码基因的表达,从而影响人类健康和疾病进程。自从人类基因组序列被公开发表以来,科学家们努力解析基因中的功能元件,包括非编码调节区——参与转录调节的顺式调节区和非编码RNA(ncRNA)。转录因子在整个基因组

中国学者Cell子刊揭示基因组“暗物质”中环状RNA新分子

  9月27日,国际学术期刊《分子细胞》(Molecular Cell)发表了中科院生物化学与细胞生物学研究所陈玲玲组与计算生物学所杨力组的最新合作研究论文,发现来源于基因内含子区域的环形RNA新分子,揭示其成环机制及在基因转录调控中的重要功能。   众所周知,人类基因组中存在大量被称为基因组

科学家揭示内含子来源环形RNA新分子及转录调控功能机制

  9月27日,国际学术期刊《分子细胞》(Molecular Cell)发表了中科院上海生命科学研究院生物化学与细胞生物学研究所陈玲玲组与计算生物学所杨力组的最新合作研究论文,发现来源于基因内含子区域的环形RNA新分子,揭示其成环机制及在基因转录调控中的重要功能。   众所周知,人类基因组中存

全球首个"个人参考基因组服务计划(PRGSP)"正式启动

  北京时间2018年3月31日晚间,北京希望组生物科技有限公司(以下简称“希望组”)在南京举行的第五届NGS创新开发者大会,与北京基云惠康科技有限公司(以下简称“基云惠康”)共同宣布启动“个人参考基因组服务计划(Personal Reference Genome Service Project)”

Nature里程碑式成果:“垃圾”DNA的起源

  来自宾州大学的研究人员取得了一项里程碑式的研究新发现:他们发现了转录起始的精确位点,从而为解析基因组“暗物质”的起源迈出了重要的一步。这一研究成果公布在9月18日的《Nature》杂志上,这将有助于分析复杂疾病特征所在的确切位置。   所谓基因组“暗物质”,其实就是基因组中的非编码RNA——不

华人学者Cancer Cell:首张人类癌症非编码RNA综合图谱

  随着对重要但知之甚少的基因组部分——“DNA暗物质”的认识日渐增加,从根本上改变了科学家们研究疾病的方式。人类基因组中包含有大约2万个蛋白质编码基因(占总数的不到2%),而70%的基因组被转录为非编码RNA。但当前仍尚未系统地调查过这些称作为长链非编码RNAs (lncRNAs)的片段以及它们发

揭示特殊的非编码RNA或是联系干细胞和癌症的标志物

  近日,刊登在国际杂志Genome Biology上的一篇研究论文中,来自圣劳伦学院的研究者阐述了其在疾病系统生物学方面的研究成果。研究者在文中发现,一种名为vlincRNAs(较长基因间非编码RNAs,very long intergenic, non-coding RNAs)的人类

研究发展出新型三维基因组成像系统

  4月7日,《细胞研究》发表了中国科学院生物物理研究所刘光慧课题组和徐涛课题组,以及中科院动物研究所曲静课题组合作的题为Visualization of Aging-Associated Chromatin Alterations with an Engineered TALE System的研究

研究发展出新型三维基因组成像系统

  4月7日,《细胞研究》发表了中国科学院生物物理研究所刘光慧课题组和徐涛课题组,以及中科院动物研究所曲静课题组合作的题为Visualization of Aging-Associated Chromatin Alterations with an Engineered TALE System的研究

Cell Res封面文章:新型三维基因组成像系统

  来自中科院生物物理研究所,中科院动物研究所等处的研究人员发展了一种新型三维基因组活细胞成像工具TTALE,并利用该系统实现了对端粒缩短和着丝粒构象变化等衰老伴随的染色质结构改变的精准成像。此外,该研究发现了核仁区核糖体DNA拷贝数减少可以作为人类衰老的新型分子标志物。上述成果为在遗传和表观遗传水

陈润生院士:长非编码核糖核酸需更多关注

  核糖核酸(RNA)是一类重要的遗传物质,经编码转录成蛋白质则是它的重要功能之一。不过,研究发现,非编码RNA占人类基因组转录产物的90%以上。由于不参与编码,这类RNA曾被认为是人类基因组的“暗物质”或者“垃圾”。   近年来,大量新研究成果表明非编码RNA是许多生命过程中富有活力的参与者。2

【盘点】单细胞测序研究进展一览

  细胞是生物学的基本单位,近年来研究人员正努力地尝试将它们进行单个分离、研究和比较。而应用而生的就是单细胞测序技术,该技术是指DNA研究中涉及测序单细胞微生物相对简单的基因组,更大更复杂的人类细胞基因组。而随着测序成本的大幅度下降,破译来自单细胞的30亿碱基的基因组并对逐个细胞进行序列比较已经开始

我国发现一类新型长非编码RNA 基因组“暗物质”不断“正名”

  国际著名学术期刊Molecular Cell近日在线发表了中国科学院上海生命科学研究院生物化学与细胞生物学研究所陈玲玲研究组关于长非编码RNA的最新进展。该研究发现,一类新型长非编码RNA,或与小胖威利综合征的发生发展密切相关。  人类基因组中存在大量被称为基因组“暗物质”的非编码序列,包括基因

Nat Commun:科学家们首次对心脏中的RNA结构进行成像!

  近日,一项刊登在国际杂志Nature Communications上的研究报告中,来自洛斯阿拉莫斯国家实验室等机构的科学家们通过研究揭示了一种特殊类型RNA分子的3-D图像,其对于干细胞重编程至关重要,被称之为基因组中的“暗物质”。图片来源:Los Alamos National Laborat

PLOS Biology:专访基因组学领域的8位大牛

  过去几十年已经彻底改变了遗传学和基因组学,那么,下一个十年呢?《PLOS Biology》请了不同领域的8位牛人科学家,谈谈他们的预测。无一例外,所有预测都指向更大规模和更多类型的数据。当然,这些大牛都很乐观,许了遗传学和基因组学一个光明的未来。  Wellcome Trust Sanger研究

8位大牛畅谈基因组学的未来

  过去几十年已经彻底改变了遗传学和基因组学,那么,下一个十年呢?《PLOS Biology》请了不同领域的8位牛人科学家,谈谈他们的预测。无一例外,所有预测都指向更大规模和更多类型的数据。当然,这些大牛都很乐观,许了遗传学和基因组学一个光明的未来。  Wellcome Trust Sanger研究

访陈润生院士:大数据治病时代已来临

   生物大数据最核心的部分是组学数据,而组学数据中最基础的数据是基因组数据。有了近年的基因组研究才派生出蛋白质组、代谢组、生物网络。也正是因为基因组的研究,才使得生物大数据实实在在地成为了大数据。近年来,随着互联网与传统医疗的融合,医学界开始在研究大数据的基础上不断探索发现新的生物学规律。如今,这

新基因筛选工具能绘制“垃圾DNA”

  据英国《每日邮报》官网报道,美国科学家近日开发了一种新的基因筛选工具,能绘制引起癌症、糖尿病和痴呆症的基因突变,或有助于开发新疗法,进而拯救每年因此丧生的数百万人。新成果发表在《公共科学图书馆》杂志上。  领导这次研究的哥伦比亚大学教授大卫·戈尔茨坦说,现在的基因测序只能在不超过三分之一的遗传病

人类癌症基因组非编码区域中鉴别出关键的致癌突变

  近日,一项刊登在国际杂志Nature上的研究报告中,来自加拿大安大略省癌症研究所的科学家们通过研究在人类癌症基因组中的大量非编码区域(也被称之为人类癌症DNA的“暗物质”)中发现了一种新型的致癌突变;这种突变或能作为一种新型潜在的治疗靶点,帮助科学家们开发治疗多种类型癌症的新型疗法,包括脑癌、肝

Cell子刊:超保守lncRNA的重要功能

  谈到遗传物质,我们往往指的是从父母那儿继承到的DNA(脱氧核糖核酸)。这些DNA会转录成为RNA,进而指导各种蛋白质的合成,例如血红蛋白或胰岛素。除了这些RNA之外,细胞中还存在着大量神秘的非编码RNA。  MicroRNA是最广为人知的一种非编码RNA,这种微小的分子控制着众多基因的启动和关闭

某些遗传疾病与“垃圾DNA”有关 找到胰腺发育不全病因

  据物理学家组织网11月10日报道,最近,科学家首次利用一种新技术分析了以往被称为“垃圾DNA”的全部基因组,以寻找某些遗传病的成因。埃克塞特大学医学院和伦敦帝国学院合作领导的一个研究小组发现,一种叫做胰腺发育不全的疾病正是由位于染色体隐蔽部位的调控基因变异造成的。相关论文发表在 11月10日

科学家找到胰腺发育不全病因 源于“垃圾DNA”

  据物理学家组织网11月10日报道,最近,科学家首次利用一种新技术分析了以往被称为“垃圾DNA”的全部基因组,以寻找某些遗传病的成因。埃克塞特大学医学院和伦敦帝国学院合作领导的一个研究小组发现,一种叫做胰腺发育不全的疾病正是由位于染色体隐蔽部位的调控基因变异造成的。相关论文发表在11 月10日

Nature子刊:揭开癌症生物标志物的“潘多拉宝盒”

  近日,来自密歇根大学综合癌症中心的研究人员刊登在国际杂志Nature Genetics上的一篇研究论文揭示了他们发现的成千上万个新型潜在的癌症生物标记物;文章中,研究者分析了此前未被研究过的长链非编码RNAs(lncRNAs)的基因组信息,这一巨大的成分曾经被认为是基因组中的暗物质,很少被研究过

2016年中国、世界十大科技进展新闻揭晓

   由中国科学院、中国工程院主办,中国科学院学部工作局、中国工程院办公厅、中国科学报社承办,中国科学院院士和中国工程院院士投票评选的2016年中国十大科技进展新闻、世界十大科技进展新闻,2016年12月31日在京揭晓。  入选新闻囊括了一年来最重要的科学发现和技术突破。  入选的2016年中国十大

科学时报:中美前沿科学研讨会十年

2007年10月,第十届中美前沿科学研究会(CAKFoS)在北京召开。本次会议实际上庆祝了中国科学界与国际科学界互动交流与合作的10年。作为会议的指导和组织者,中国科学院常务副院长白春礼和中国科学院国际合作局副局长曹京华在最新出版的《美国国家科学院院刊》上撰文,回顾了10年中美前沿研讨会的意义和作用

研究人员观测到人类基因组新的“暗物质”

  人类对基因组变异的认识又向前推进一大步:西安交通大学日前传出消息,该校叶凯青年科学家工作室团队与荷兰、美国、德国的20个科研机构,通过开发新的计算机算法和分析处理流程,分析并报道了在250个健康家庭的基因组中的所有类型变异,其中包括以前从未观测到的大量复杂型变异,即基因组中的“暗物质”。  据介

重大发现!DNA中的暗物质或会影响机体大脑发育!

  基因组中“暗物质”片段产生的谜题已经困扰了科学家们10几年时间,这段长而弯曲的DNA链并没有明显的功能,而如今研究人员揭开了这一谜题;这个难题主要集中在一些不编码蛋白质的DNA序列上,然而这些序列在很多种动物机体中是相同的,通过剔除一些超保守成分(Ultraconserved Elements)