ATP合成的结合转化机制

γ-亚基的转动引起β亚基的构象依紧绷(T)、松弛(L)和开放(O)的顺序变化,完成ADP和Pi的结合、 ATP的形成以及ATP的释放三个过程光合磷酸化的抑制剂叶绿体进行光合磷酸化,必须:(1)类囊体膜上进行电子传递;(2)类囊体膜内外有质子梯度;(3)有活性的ATP酶。破坏这三个条件之一的试剂都能使光合磷酸化中止,这些试剂也就成了光合磷酸化的抑制剂。(1)电子传递链传递过程是:P680→pheo→Q→PQ→Fe-S-Cytb6→Cytf→PC→P700。其中 P700 和 P680分别为光系统Ⅰ和光系统Ⅱ的作用中心色素,pheo为去镁叶绿素(2)电子传递抑制剂指抑制光合电子传递的试剂,如羟胺(NH2OH)切断水到PSⅡ的电子流,DCMU抑制从PSⅡ上的Q到PQ的电子传递;KCN和Hg等则抑制PC的氧化。一些除草剂如西玛津(simazine)、阿特拉津(atrazine)、除草定(bromacil)、异草定(isocil)等也是电......阅读全文

ATP合成的结合转化机制

γ-亚基的转动引起β亚基的构象依紧绷(T)、松弛(L)和开放(O)的顺序变化,完成ADP和Pi的结合、 ATP的形成以及ATP的释放三个过程光合磷酸化的抑制剂叶绿体进行光合磷酸化,必须:(1)类囊体膜上进行电子传递;(2)类囊体膜内外有质子梯度;(3)有活性的ATP酶。破坏这三个条件之一的试剂都能使

ATP合成酶的合成过程

F₁和Fo通过“转子”和“定子”连接在一起,在合成水解ATP过程中,“转子”在通过Fo的氢离子流推动下旋转,每分钟旋转100次,依次与三个β亚基作用,调节β亚基催化位点的构象变化;“定子”在一侧将α3,β3与Fo连接起来。作用之一就是将跨膜质子动力势能转换成力矩(torsion),推动“转子”旋转。

ATP合成酶的合成过程

F₁和Fo通过“转子”和“定子”连接在一起,在合成水解ATP过程中,“转子”在通过Fo的氢离子流推动下旋转,每分钟旋转100次,依次与三个β亚基作用,调节β亚基催化位点的构象变化;“定子”在一侧将α3,β3与Fo连接起来。作用之一就是将跨膜质子动力势能转换成力矩(torsion),推动“转子”旋转。

ATP合成酶的合成过程

F₁和Fo通过“转子”和“定子”连接在一起,在合成水解ATP过程中,“转子”在通过Fo的氢离子流推动下旋转,每分钟旋转100次,依次与三个β亚基作用,调节β亚基催化位点的构象变化;“定子”在一侧将α3,β3与Fo连接起来。作用之一就是将跨膜质子动力势能转换成力矩(torsion),推动“转子”旋转。

ATP合成酶的合成过程

F₁和Fo通过“转子”和“定子”连接在一起,在合成水解ATP过程中,“转子”在通过Fo的氢离子流推动下旋转,每分钟旋转100次,依次与三个β亚基作用,调节β亚基催化位点的构象变化;“定子”在一侧将α3,β3与Fo连接起来。作用之一就是将跨膜质子动力势能转换成力矩(torsion),推动“转子”旋转。

ATP合成的部位——ATP酶的相关介绍

  质子反向转移和合成ATP是在ATP酶(腺苷三磷酸酶 adenosine triphosphatase,ATPase)上进行的。叶绿体内囊体膜上的ATP酶也称偶联因子(coupling factor)或CF1-CF0复合体。叶绿体的ATP酶与线粒体、细菌膜上的ATP酶结构十分相似,都由两个蛋白复合

ATP与ADP的转化关系

在ATP水解酶的作用下,ATP中远离A的高能磷酸键水解,释放出其中的能量,同时生成ADP和Pi;在ATP合成酶的作用下,ADP接受能量与一个Pi结合转化成ATP。ATP与ADP相互转变的反应是不可逆的,反应式中物质可逆,能量不可逆。ADP和Pi可以循环利用,所以物质可逆;但是形成ATP时所需能量绝不

ATP合成酶的合成过程介绍

  F₁和Fo通过“转子”和“定子”连接在一起,在合成水解ATP过程中,“转子”在通过Fo的氢离子流推动下旋转,每分钟旋转100次,依次与三个β亚基作用,调节β亚基催化位点的构象变化;“定子”在一侧将α3,β3与Fo连接起来。作用之一就是将跨膜质子动力势能转换成力矩(torsion),推动“转子”旋

ATP酶的反应机制

ATP酶与ATP水解反应耦合的转运是一个严格的化学反应,即每分子ATP水解能够使一定数量的溶液分子被转运。例如,对于钠钾ATP酶,每分子ATP水解能够使3个钠离子被运出细胞,同时2个钾离子被运入。跨膜ATP酶需要ATP水解所产生的能量,因为这些酶需要做功:它们逆著热力学上更容易发生的方向来进行物质运

ATP酶的作用机制

关于ATP酶催化ADP氧化磷酸化成ATP的机制,先后提出过几种假说 1、化学偶联假说;2、构象假说;3、化学渗透假说。目前流行的是化学渗透假说,由英国生物化学家P.Mitchell于1961年提出。该学说很好地说明线粒体内膜中电子传递、质子电化学梯度建立、ADP磷酸化的关系,并具有大量的实验支持,得

ATP合成酶的分布情况

ATP合酶(ATP synthase)广泛分布于线粒体内膜,叶绿体类囊体,异养菌和光合菌的质膜上,参与氧化磷酸化和光合磷酸化,在跨膜质子动力势的推动下合成ATP。分子结构由突出于膜外的F1亲水头部和嵌入膜内的Fo疏水尾部组成。

ATP合成酶的功能介绍

ATP合成酶是一类线粒体与叶绿体中的合成酶,它广泛存在于线粒体、叶绿体、原核藻、异养菌和光合细菌中,是生物体能量代谢的关键酶。ATP合成酶可以在跨膜质子动力势的推动下,利用ADP和Pi催化合成生物体的能量“通货”——ATP。一般来说,机体所需的大多数ATP都是由ATP合酶产生的。据估计,人体每天进行

ATP合成酶的结构组成

ATP合酶主要由F₁(伸在膜外的水溶性部分) 和Fo(嵌入膜内)组成。不同物种来源的 ATP合酶含的亚基和数目不尽相同。以牛心线粒体 ATP合酶为例,它的F₁含有仅α3、β3、γ、δ、ε共9 个亚基,Fo含a、b2、C10共13个亚基,F₁与Fo之间有OSCP柄相连接,还有抑制蛋白。线粒体F₁Fo-

ATP在细胞中的再生与转化

ATP在细胞中易于再生,所以是源源不断的能源。这种通过ATP的水解和合成而使放能反应所释放的能量用于吸能反应的过程称为ATP循环。因为ATP是细胞中普遍应用的能量的载体,所以常称之为细胞中的能量通货。细胞内ATP与ADP相互转化的能量供应机制,是生物界的共性。从生物能量学的角度来看,ATP是生化系统

什么是ATP合成酶?

ATP合成酶,又称FoF₁-ATP酶在细胞内催化能源物质ATP的合成。在呼吸或光合作用过程中通过电子传递链释放的能量先转换为跨膜质子(H+)梯差,之后质子流顺质子梯差通过ATP合酶可以使ADP+Pi合成ATP。

什么是ATP合成酶?

ATP合成酶是一类线粒体与叶绿体中的合成酶,它广泛存在于线粒体、叶绿体、原核藻、异养菌和光合细菌中,是生物体能量代谢的关键酶。ATP合成酶可以在跨膜质子动力势的推动下,利用ADP和Pi催化合成生物体的能量“通货”——ATP。一般来说,机体所需的大多数ATP都是由ATP合酶产生的。据估计,人体每天进行

ATP合成酶的合成过程中的问题

(1)如何获得Fo的精细结构图像;(2)质子通道c环与蛋白a之间的相互作用机制;(3)质子流向与马达转向的对应切换机制;(4)“转子”γ轴的储能机制;(5)“定子”上的化学循环与“转子”的步进式转动之 问如何实现高效的力学化学耦合;(6)三个催化位点顺序可逆的构象变换:βo→←βL,βL→←βT和β

ATP酶的反应机制介绍

  ATP酶与ATP水解反应耦合的转运是一个严格的化学反应,即每分子ATP水解能够使一定数量的溶液分子被转运。例如,对于钠钾ATP酶,每分子ATP水解能够使3个钠离子被运出细胞,同时2个钾离子被运入。  跨膜ATP酶需要ATP水解所产生的能量,因为这些酶需要做功:它们逆著热力学上更容易发生的方向来进

ATP酶的作用机制介绍

  关于ATP酶催化ADP氧化磷酸化成ATP的机制,先后提出过几种假说  1、化学偶联假说;  2、构象假说;  3、化学渗透假说。  目前流行的是化学渗透假说,由英国生物化学家P.Mitchell于1961年提出。该学说很好地说明线粒体内膜中电子传递、质子电化学梯度建立、ADP磷酸化的关系,并具有

线粒体ADP/ATP载体转运ATP和ADP的分子机制

  在一项新的研究中,来自英国剑桥大学、东安格利亚大学、比利时弗兰德斯生物技术研究所(VIB)和美国国家神经疾病与卒中研究所的研究人员发现了一种称为线粒体ADP/ATP载体(mitochondrial ADP/ATP carrier)的关键转运蛋白如何转运三磷酸腺苷(ATP),即细胞的化学燃料。这个

ATP合成酶的前景及展望

21世纪是纳米科技的世纪。高集成、智能化纳米器件的开发必将推动信息技术、生物技术、新材料技术、能源技术及环境技术等的高速发展。纳米技术是国际科技竞争的前沿,也是对未来社会发展、经济振兴、国力增强最有影响力的战略研究领域。人工纳米机器的构建与应用是此前沿领域国际上最具有挑战性的热点课题之一。21世纪也

ATP合成酶的基本信息

ATP合成酶,又称FoF₁-ATP酶在细胞内催化能源物质ATP的合成。在呼吸或光合作用过程中通过电子传递链释放的能量先转换为跨膜质子(H+)梯差,之后质子流顺质子梯差通过ATP合酶可以使ADP+Pi合成ATP。ATP合酶(ATP synthase)广泛分布于线粒体内膜,叶绿体类囊体,异养菌和光合菌的

ATP合成酶的前景及展望

21世纪是纳米科技的世纪。高集成、智能化纳米器件的开发必将推动信息技术、生物技术、新材料技术、能源技术及环境技术等的高速发展。纳米技术是国际科技竞争的前沿,也是对未来社会发展、经济振兴、国力增强最有影响力的战略研究领域。人工纳米机器的构建与应用是此前沿领域国际上最具有挑战性的热点课题之一。21世纪也

ATP合成酶的基本内容

  ATP合成酶是一类线粒体与叶绿体中的合成酶,它广泛存在于线粒体、叶绿体、原核藻、异养菌和光合细菌中,是生物体能量代谢的关键酶。  ATP合成酶可以在跨膜质子动力势的推动下,利用ADP和Pi催化合成生物体的能量“通货”——ATP。一般来说,机体所需的大多数ATP都是由ATP合酶产生的。据估计,人体

关于ATP合成酶的组成介绍

  ATP合酶主要由F₁(伸在膜外的水溶性部分) 和Fo(嵌入膜内)组成(图1)。不同物种来源的 ATP合酶含的亚基和数目不尽相同。以牛心线粒体 ATP合酶为例,它的F₁含有仅α3、β3、γ、δ、ε共9 个亚基,Fo含a、b2、C10共13个亚基,F₁与Fo之间有OSCP柄相连接,还有抑制蛋白。线粒

ATP在细胞中的再生与转化过程

ATP在细胞中易于再生,所以是源源不断的能源。这种通过ATP的水解和合成而使放能反应所释放的能量用于吸能反应的过程称为ATP循环。因为ATP是细胞中普遍应用的能量的载体,所以常称之为细胞中的能量通货。细胞内ATP与ADP相互转化的能量供应机制,是生物界的共性。从生物能量学的角度来看,ATP是生化系统

钠钾ATP酶的作用机制

钠钾泵的作用方式可因不同生理条件而异,在红细胞膜中可能有以下几种方式:⒈ 正常的作用方式——利用ATP的水解与Na+-K+的跨膜转运相偶联。⒉ 泵的反方向作用——利用Na+-K+的跨膜转运来推动ATP的合成。⒊ Na+- Na+交换反应可能与ATP和ADP交换反应相偶联。⒋ K+ - K+交换反应与

概述ATP合成酶的前景及展望

  21世纪是纳米科技的世纪。高集成、智能化纳米器件的开发必将推动信息技术、生物技术、新材料技术、能源技术及环境技术等的高速发展。纳米技术是国际科技竞争的前沿,也是对未来社会发展、经济振兴、国力增强最有影响力的战略研究领域。人工纳米机器的构建与应用是此前沿领域国际上最具有挑战性的热点课题之一。  2

ATP合成酶的功能和分布情况

ATP合成酶,又称FoF₁-ATP酶在细胞内催化能源物质ATP的合成。在呼吸或光合作用过程中通过电子传递链释放的能量先转换为跨膜质子(H+)梯差,之后质子流顺质子梯差通过ATP合酶可以使ADP+Pi合成ATP。ATP合酶(ATP synthase)广泛分布于线粒体内膜,叶绿体类囊体,异养菌和光合菌的

产学研结合促进科技成果转化

  “我们不光要有知识创新,也要鼓励产学研结合,让科研成果得到更好的应用。”安徽大学校长、中科院合肥物质科学研究院院长匡光力委员认为,地方高校和科研机构要提高科研转让和转化成绩,必须依靠地方政府的大力支持。  中科院合肥物质科学研究院坐落在三面环水的董铺岛,他们与合肥市政府在合肥高新区共同成立了中科