电压门控离子通道介绍

电压门控离子通道(Voltage-gated Ion Channel)主要有钠、钾、钙等离子通道,通常由同一亚基的四个跨膜区段围成孔道,孔道中有一些带电基团(电位敏感器)控制闸门。......阅读全文

电压门控离子通道介绍

电压门控离子通道(Voltage-gated Ion Channel)主要有钠、钾、钙等离子通道,通常由同一亚基的四个跨膜区段围成孔道,孔道中有一些带电基团(电位敏感器)控制闸门。

电压门控离子通道的定义

当跨膜电位发生变化时,电敏感器在电场力的作用下产生位移,响应膜电位的变化,造成闸门的开启或关闭。孔道口的孔径和电荷分布形成离子选择器,但并非对其它离子绝对不通透。

电压门控离子通道的定义

当跨膜电位发生变化时,电敏感器在电场力的作用下产生位移,响应膜电位的变化,造成闸门的开启或关闭。孔道口的孔径和电荷分布形成离子选择器,但并非对其它离子绝对不通透。

电压门控离子通道的定义

电压门控离子通道(Voltage-gated Ion Channel)主要有钠、钾、钙等离子通道,通常由同一亚基的四个跨膜区段围成孔道,孔道中有一些带电基团(电位敏感器)控制闸门。

电压门控离子通道的原理

当跨膜电位发生变化时,电敏感器在电场力的作用下产生位移,响应膜电位的变化,造成闸门的开启或关闭。孔道口的孔径和电荷分布形成离子选择器,但并非对其它离子绝对不通透。

电压门控离子通道的结构组成

电压门控离子通道(Voltage-gated Ion Channel)主要有钠、钾、钙等离子通道,通常由同一亚基的四个跨膜区段围成孔道,孔道中有一些带电基团(电位敏感器)控制闸门。

电压门控离子通道研究取得重要进展

  电压门控钠离子通道简称“钠通道”位于细胞膜上,能够引发和传导动作电位,参与神经信号传递、肌肉收缩等重要生理过程。 钠通道的异常会导致诸如痛觉失常、癫痫、心率失常等一系列神经和心血管疾病。另一方面,很多已知的生物毒素以及临床上广泛应用的麻醉剂等小分子均通过直接作用于钠通道发挥作用。因此,钠通道是诸

新视角!物理所揭示电压门控生物离子通道工作机制

  纳米通道中的离子输运特性与机理是研究细胞离子通道、离子整流与纳滤过滤的基础。纳米孔道结构与表面修饰对离子输运调控的研究工作已有诸多报道,但关于电场对于纳米孔道表面与离子输运的影响尚不清楚。  中国科学院近代物理研究所科研人员利用HIRFL高能微束装置的单离子辐照技术和径迹蚀刻法制备的PET单纳米

哺乳动物电压门控钙离子通道配体调控的分子基础

广泛分布的电压门控Ca2+(Cav)通道参与广泛的生理过程,例如收缩,分泌和细胞死亡。在哺乳动物中,10个Cav通道亚型被分为三个亚家族:Cav1(Cav1.1-Cav1.4),Cav2(Cav2.1-Cav2.3)和Cav3(Cav3.1-Cav3.3)。 Cav1通道,也称为L-型Cav或二氢吡

递质门控离子通道的定义

中文名称递质门控离子通道英文名称transmitter-gated ion channel定  义神经和肌细胞突触后膜结合上专一性的细胞外神经递质才开放的离子通道。具有将化学信号转变为电信号的功能。能使突触后质膜的通透性发生改变,从而引起膜电位改变,促使神经冲动传递下去。应用学科细胞生物学(一级学科

递质门控离子通道的定义

中文名称递质门控离子通道英文名称transmitter-gated ion channel定  义神经和肌细胞突触后膜结合上专一性的细胞外神经递质才开放的离子通道。具有将化学信号转变为电信号的功能。能使突触后质膜的通透性发生改变,从而引起膜电位改变,促使神经冲动传递下去。应用学科细胞生物学(一级学科

几种不同的门控离子通道

配体门通道(ligand gated channel)、电位门通道(voltage gated channel)、环核苷酸门通道(Cyclic Nucleotide-Gated Ion Channels)和机械门通道(mechanosensitive channel)。不同通道对不同离子的通透性不同

研究发现KIF5B促进电压门控钠离子通道运输及功能

  电压门控钠离子通道是可兴奋细胞产生动作电位的基础,其亚型1.8(Nav1.8)选择性分布于外周神经系统,并对炎性痛和神经病理性痛有重要贡献。之前的研究显示,Nav1.8主要定位于背根神经节(DRG)神经元的细胞质内,外周炎症和神经损伤时聚集到坐骨神经中,但是Nav1.8在神经纤维中发生聚集的分子

发现小分子调控人源电压门控钠离子通道的结构学基础

  电压门控钠离子通道蛋白在产生和传导动作电位中发挥重要作用。在哺乳动物中,基于组织特异性,至少有9种电压门控钠离子通道异构体,其中命名为“Nav1.3”的电压门控钠离子通道蛋白在中枢神经系统中表达量高。有证据表明Nav1.3蛋白的突变与局灶性癫痫和多微脑回畸形疾病有关,因此Nav1.3蛋白可以作为

递质门控离子通道的结构功能

中文名称递质门控离子通道英文名称transmitter-gated ion channel定  义神经和肌细胞突触后膜结合上专一性的细胞外神经递质才开放的离子通道。具有将化学信号转变为电信号的功能。能使突触后质膜的通透性发生改变,从而引起膜电位改变,促使神经冲动传递下去。应用学科细胞生物学(一级学科

递质门控离子通道的基本概念

中文名称递质门控离子通道英文名称transmitter-gated ion channel定  义神经和肌细胞突触后膜结合上专一性的细胞外神经递质才开放的离子通道。具有将化学信号转变为电信号的功能。能使突触后质膜的通透性发生改变,从而引起膜电位改变,促使神经冲动传递下去。应用学科细胞生物学(一级学科

生物膜离子通道分子构象和门控动力学介绍

离子通道研究的前沿是试图从分子水平揭示通道蛋白的空间构象、构象变化与通道门控动力学之间的关系。N-AchR通道已测定了受体蛋白质分子量是250000,并测定了它的全部氨基酸序列,确证该受体通道由、α、γ和δ5个亚基组成,这4种亚基有相似的氨基酸顺序,但只有α亚基上有 α-BGTX的特异结合位点。一种

人电压门控钾通道自身抗体定性分析

人ELISA试剂盒实验原理 本试剂盒应用双抗原夹心法测定标本中人电压门控钾通道自身抗体(VGKC Ab)水平。用纯化的抗原包被微孔板,制成固相抗原,往包被单抗的微孔中依次加入电压门控钾通道自身抗体(VGKC Ab),再与HRP标记的抗原结合,形成抗原-抗体-酶标抗原复合物,经过彻底洗涤后加底物T

骨质发育相关的新型阳离子通道结构与门控机制获进展

  10月3日,《自然》(NATURE)期刊在线发表了中国科学院生物物理研究所柳振峰课题组关于三聚态胞内阳离子通道(TRimeric Intracellular Cation channel, TRIC channel)的结构与门控机制研究成果。  钙离子在生物体和细胞的生理活动过程中发挥重要的作用

骨质发育相关新型阳离子通道结构与门控机制研究获进展

  10月3日,《自然》(NATURE)期刊在线发表了中国科学院生物物理研究所柳振峰课题组关于三聚态胞内阳离子通道(TRimeric Intracellular Cation channel, TRIC channel)的结构与门控机制研究成果。  钙离子在生物体和细胞的生理活动过程中发挥重要的作用

生物膜离子通道的离子通道分类

离子通道的开放和关闭,称为门控。根据门控机制的不同,将离子通道分为三大类:⑴电压门控性,又称电压依赖性或电压敏感性离子通道:因膜电位变化而开启和关闭,以最容易通过的离子命名,如钾、钠、钙、氯通道四种主要类型,各型又分若干亚型。⑵配体门控性,又称化学门控性离子通道。由递质与通道蛋白质受体分子上的结合位

离子通道分类

离子通道的开放和关闭,称为门控。根据门控机制的不同,将离子通道分为三大类:⑴电压门控性,又称电压依赖性或电压敏感性离子通道:因膜电位变化而开启和关闭,以最容易通过的离子命名,如钾、钠、钙、氯通道四种主要类型,各型又分若干亚型。⑵配体门控性,又称化学门控性离子通道。由递质与通道蛋白质受体分子上的结合位

蒋华良等离子通道结构功能研究与药物设计获进展

  GPCR和激酶等靶标存在较为明确的内源性配体结合口袋,其激动剂类药物一般是作用于该口袋,在一定程度上取代(模仿)内源性激动剂的功能。针对 GPCR和激酶开展的基于结构的药物设计已有很多成功案例。与这些受体和激酶不同,电压门控通道是被电压激活,没有明确的常规内源性配体结合口袋。确证激动剂的作用

神经所与药物所研究发现酸敏感离子通道非质子门控机理

酸敏感离子通道结构(A),质子和非质子配体(B)以及GMQ作用位点(A,C)  10月7日,美国《神经元》(Neuron)杂志在线发表了中国科学院上海生命科学研究院神经科学研究所徐天乐研究员和上海药物研究所蒋华良研究员领导的科研团队的研究成果——A Nonproton Ligand

我国在离子通道三维结构及精细门控机制方面再获进展

  在国家自然科学基金重点项目(项目编号:31630090)等资助下,清华大学医学院肖百龙课题组和清华大学生科院李雪明课题组开展合作研究,研究成果以“Structure and mechanogating mechanism of the Piezo1 channel”(Piezo1离子通道的结构与

芋螺毒素的主要分类

根据芋螺毒素作用于生物体内的不同靶位可分为3类:(1)作用于电压门控离子通道的CTX,电压门控离子通道又称电压敏感性通道,常以通透离子(如Na+,K+,Ca2+等)命名。(2)作用于配体门控离子通道的CTX,包括烟碱受体、5-HT3受体、NMDA受体。配体门控通道又称化学门控通道或递质依赖性通道,后

关于芋螺毒素的分类介绍

  根据芋螺毒素作用于生物体内的不同靶位可分为3类:  (1)作用于电压门控离子通道的CTX,电压门控离子通道又称电压敏感性通道,常以通透离子(如Na+,K+,Ca2+等)命名。  (2)作用于配体门控离子通道的CTX,包括烟碱受体、5-HT3受体、NMDA受体。配体门控通道又称化学门控通道或递质依

清华大学生科院2017开年连发Nature,Cell文章

  清华大学生科院近年来在结构生物学研究方面取得了许多进展,2017年开年也连续在Cell,Nature杂志上发表重要成果,首先高宁研究组与北京大学分子医学所陈雷研究组合作,报道了ATP敏感的钾离子通道(KATP)的中等分辨率(5.6Å)冷冻电镜结构,揭示了KATP组装模式,为进一步研究其工作机制提

Nature,Cell文章揭示关键结构生物学

  清华大学生科院近年来在结构生物学研究方面取得了许多进展,2017年开年也连续在Cell,Nature杂志上发表重要成果,首先高宁研究组与北京大学分子医学所陈雷研究组合作,报道了ATP敏感的钾离子通道(KATP)的中等分辨率(5.6Å)冷冻电镜结构,揭示了KATP组装模式,为进一步研究其工作机制提

中科院,清华大学发表最新Nature文章

  来自哥伦比亚大学,中国科学院和云南省动物模型与人类疾病机理重点实验室,清华大学生科院的研究人员发表了题为“Structure of a eukaryotic cyclic-nucleotide-gated channel”的文章,报道了真核生物环核苷酸门控离子通道(CNG离子通道)的最新单粒子电