光合磷酸化的抑制剂

叶绿体进行光合磷酸化,必须:(1)类囊体膜上进行电子传递;(2)类囊体膜内外有质子梯度;(3)有活性的ATP酶。破坏这三个条件之一的试剂都能使光合磷酸化中止,这些试剂也就成了光合磷酸化的抑制剂。(1)电子传递链传递过程是:P680→pheo→Q→PQ→Fe-S-Cytb6→Cytf→PC→P700。其中 P700 和 P680分别为光系统Ⅰ和光系统Ⅱ的作用中心色素,pheo为去镁叶绿素(2)电子传递抑制剂指抑制光合电子传递的试剂,如羟胺(NH2OH)切断水到PSⅡ的电子流,DCMU抑制从PSⅡ上的Q到PQ的电子传递;KCN和Hg等则抑制PC的氧化。一些除草剂如西玛津(simazine)、阿特拉津(atrazine)、除草定(bromacil)、异草定(isocil)等也是电子传递抑制剂,它们通过阻断电子传递抑制光合作用来杀死植物。(3)解偶联剂指解除磷酸化反应与电子传递之间偶联的试剂。常见的这类试剂有DNP(dinitrophe......阅读全文

光合磷酸化的抑制剂

叶绿体进行光合磷酸化,必须:(1)类囊体膜上进行电子传递;(2)类囊体膜内外有质子梯度;(3)有活性的ATP酶。破坏这三个条件之一的试剂都能使光合磷酸化中止,这些试剂也就成了光合磷酸化的抑制剂。(1)电子传递链传递过程是:P680→pheo→Q→PQ→Fe-S-Cytb6→Cytf→PC→P700。

光合磷酸化的抑制剂介绍

叶绿体进行光合磷酸化,必须:(1)类囊体膜上进行电子传递;(2)类囊体膜内外有质子梯度;(3)有活性的ATP酶。破坏这三个条件之一的试剂都能使光合磷酸化中止,这些试剂也就成了光合磷酸化的抑制剂。(1)电子传递链传递过程是:P680→pheo→Q→PQ→Fe-S-Cytb6→Cytf→PC→P700。

关于光合磷酸化的抑制剂的介绍

  叶绿体进行光合磷酸化,必须:(1)类囊体膜上进行电子传递;(2)类囊体膜内外有质子梯度;(3)有活性的ATP酶。破坏这三个条件之一的试剂都能使光合磷酸化中止,这些试剂也就成了光合磷酸化的抑制剂。  (1)电子传递链  传递过程是:P680→pheo→Q→PQ→Fe-S-Cytb6→Cytf→PC

光合磷酸化的过程和抑制剂介绍

叶绿体进行光合磷酸化,必须:(1)类囊体膜上进行电子传递;(2)类囊体膜内外有质子梯度;(3)有活性的ATP酶。破坏这三个条件之一的试剂都能使光合磷酸化中止,这些试剂也就成了光合磷酸化的抑制剂。(1)电子传递链传递过程是:P680→pheo→Q→PQ→Fe-S-Cytb6→Cytf→PC→P700。

光合磷酸化的定义

光合磷酸化是指由光照引起的电子传递与磷酸化作用相偶联而生成ATP的过程。

光合磷酸化的概念

光合磷酸化是指由光照引起的电子传递与磷酸化作用相偶联而生成ATP的过程。

光合磷酸化的机理

光合磷酸化的机理同线粒体进行的氧化磷酸化相似,同样可用化学渗透学说来说明。在电子传递和ATP合成之间, 起偶联作用的是膜内外之间存在的质子电化学梯度。类囊体膜进行的光合电子传递与光合磷酸化需要四个跨膜复合物参加:光系统Ⅱ、细胞色素b6/f复合物、光系统Ⅰ和ATP合酶。有三个可动的分子(质子):质体醌

光合磷酸化的概念

光合磷酸化(photophosphorylation)是植物叶绿体的类囊体膜或光合细菌的载色体在光下催化腺二磷(ADP)与磷酸(Pi)形成腺三磷(ATP)的反应。有两种类型:循环式光合磷酸化和非循环式光合磷酸化。前者是在光反应的循环式电子传递过程中同时发生磷酸化,产生ATP。后者是在光反应的非循环式

光合磷酸化的定义

光合磷酸化(photosynthetic phosphorylation或photophosphorylation)是指在光合作用中由光驱动并贮存在跨类囊体膜的质子梯度的能量把和磷酸合成为的过程。光合磷酸化有两个类型:非循环光合磷酸化和循环光合磷酸化。

光合磷酸化的主要机制

1966年,Andre Jagendorf实验证明,即使在暗处叶绿体也可以形成ATP,只要在类囊膜两侧形成人为的pH梯度。即将叶绿体在pH4缓冲液中泡12小时,然后迅速与含ADP、Pi的pH 8缓冲液混合,叶绿体基质的pH迅速升至8,但是类囊体中的pH仍是4,这时发现随着类囊膜两侧pH梯度的消失,同

光合磷酸化的主要类型

与光合电子传递类同,光合磷酸化也被分为三种类型。1.非环式光合磷酸化(noncyclic photophosphorylation) 与非环式电子传递偶联产生ATP的反应。按图4-15,非环式光合磷酸化与吸收量子数的关系可用下式表示。2NADP+3ADP+3Pi+2H2O → 2NADPH+2H+3

光合磷酸化的主要类型

与光合电子传递类同,光合磷酸化也被分为三种类型。1.非环式光合磷酸化(noncyclic photophosphorylation) 与非环式电子传递偶联产生ATP的反应。按图4-15,非环式光合磷酸化与吸收量子数的关系可用下式表示。2NADP+3ADP+3Pi+2H2O → 2NADPH+2H+3

光合磷酸化的类型介绍

光合磷酸化有两个类型:非循环光合磷酸化和循环光合磷酸化。 1.非循环光合磷酸化OEC处水裂解后,把释放到类囊体腔内,把电子传递到PSⅡ电子在光合电子传递链中传递时,伴随着类囊体外侧的转移到腔内,由此形成了跨膜的浓度差,引起了的形成;与此同时把电子传递到PSⅠ去,进一步提高了能位,而使还原为,此外,还

ATP合成的结合转化机制

γ-亚基的转动引起β亚基的构象依紧绷(T)、松弛(L)和开放(O)的顺序变化,完成ADP和Pi的结合、 ATP的形成以及ATP的释放三个过程光合磷酸化的抑制剂叶绿体进行光合磷酸化,必须:(1)类囊体膜上进行电子传递;(2)类囊体膜内外有质子梯度;(3)有活性的ATP酶。破坏这三个条件之一的试剂都能使

什么是光合磷酸化?

光合磷酸化是指由光照引起的电子传递与磷酸化作用相偶联而生成ATP的过程。

环式光合磷酸化的概念

环式光合磷酸化:循环光合磷酸化可在光能驱动下通过电子的循环式传递而完成磷酸化产能反应。叶绿素受日光照射后形成激发态逐出电子经类似呼吸链的传递又回到菌绿素,使其恢复到原状态,期间产生ATP,但不产生还原力,不放出氧气。光合细菌属此类。

环式光合磷酸化的概念

环式光合磷酸化:循环光合磷酸化可在光能驱动下通过电子的循环式传递而完成磷酸化产能反应。叶绿素受日光照射后形成激发态逐出电子经类似呼吸链的传递又回到菌绿素,使其恢复到原状态,期间产生ATP,但不产生还原力,不放出氧气。光合细菌属此类。

关于光合磷酸化的机制介绍

  1966年,Andre Jagendorf实验证明,即使在暗处叶绿体也可以形成ATP,只要在类囊膜两侧形成人为的pH梯度。即将叶绿体在pH4缓冲液中泡12小时,然后迅速与含ADP、Pi的pH 8缓冲液混合,叶绿体基质的pH迅速升至8,但是类囊体中的pH仍是4,这时发现随着类囊膜两侧pH梯度的消失

假循环光合磷酸化的概念

中文名称假循环光合磷酸化英文名称pseudo-cyclic photophosphorylation定  义叶绿体光照时,如用黄素单核苷酸或维生素K3等还原接受电子,再被氧氧化,则看不到放氧,但仍能使ATP生成。应用学科生物化学与分子生物学(一级学科),新陈代谢(二级学科)

光合磷酸化的主要类型介绍

1.非环式光合磷酸化(noncyclic photophosphorylation) 与非环式电子传递偶联产生ATP的反应。按图4-15,非环式光合磷酸化与吸收量子数的关系可用下式表示。2NADP+3ADP+3Pi+2H2O → 2NADPH+2H+3ATP+O2 在进行非环式光合磷酸化的反应中,体

关于光合磷酸化的类型介绍

  与光合电子传递类同,光合磷酸化也被分为三种类型。  1.非环式光合磷酸化(noncyclic photophosphorylation) 与非环式电子传递偶联产生ATP的反应。按图4-15,非环式光合磷酸化与吸收量子数的关系可用下式表示。  2NADP+3ADP+3Pi+2H2O → 2NADP

非循环光合磷酸化的概念

中文名称非循环光合磷酸化英文名称noncyclic photophosphorylation定  义叶绿体光系统吸收的光能用于产生ATP和NADPH的过程。应用学科细胞生物学(一级学科),细胞生理(二级学科)

关于光合磷酸化的基本介绍

  光合磷酸化(photophosphorylation)是植物叶绿体的类囊体膜或光合细菌的载色体在光下催化腺二磷(ADP)与磷酸(Pi)形成腺三磷(ATP)的反应。有两种类型:循环式光合磷酸化和非循环式光合磷酸化。前者是在光反应的循环式电子传递过程中同时发生磷酸化,产生ATP。后者是在光反应的非循

光合磷酸化的化学渗透学说

  关于光合磷酸化的机理有多种学说,如中间产物学说、变构学说、化学渗透学说等,其中被广泛接受的是化学渗透学说。  化学渗透学说(chemiosmotic theory)由英国的米切尔(Mitchell,1961)提出,该学说假设能量转换和偶联机构具有以下特点:  ①由磷脂和蛋白多肽构成的膜对离子和质

环式光合磷酸化的概念

环式光合磷酸化:循环光合磷酸化可在光能驱动下通过电子的循环式传递而完成磷酸化产能反应。叶绿素受日光照射后形成激发态逐出电子经类似呼吸链的传递又回到菌绿素,使其恢复到原状态,期间产生ATP,但不产生还原力,不放出氧气。光合细菌属此类。

光合磷酸化作用(photophosphorylation)

光合作用中与电子传递相偶联的ADP与无机磷酸(Pi)酯化形成ATP的作用。由于形成ATP所需的能量是来自光能,故称光合磷酸化以区别于与呼吸链相偶联的磷酸化作用(氧化磷酸化)。有2种类型:(1)循环式光合磷酸化,是与循环的电子流相偶联,在此过程中仅形成ATP。(2)非循环式光合磷酸化,是与非循环

光合磷酸化有哪些形式?

光合磷酸化(photophosphorylation)是植物叶绿体的类囊体膜或光合细菌的载色体在光下催化腺二磷(ADP)与磷酸(Pi)形成腺三磷(ATP)的反应。有两种类型:循环式光合磷酸化和非循环式光合磷酸化。前者是在光反应的循环式电子传递过程中同时发生磷酸化,产生ATP。后者是在光反应的非循环式

非循环光合磷酸化的作用特点

中文名称非循环光合磷酸化英文名称noncyclic photophosphorylation定  义叶绿体光系统吸收的光能用于产生ATP和NADPH的过程。应用学科细胞生物学(一级学科),细胞生理(二级学科)

光合磷酸化的定义和反应过程

光合磷酸化(photophosphorylation)是植物叶绿体的类囊体膜或光合细菌的载色体在光下催化腺二磷(ADP)与磷酸(Pi)形成腺三磷(ATP)的反应。有两种类型:循环式光合磷酸化和非循环式光合磷酸化。前者是在光反应的循环式电子传递过程中同时发生磷酸化,产生ATP。后者是在光反应的非循环式

环式光合磷酸化的作用特点

环式光合磷酸化:循环光合磷酸化可在光能驱动下通过电子的循环式传递而完成磷酸化产能反应。叶绿素受日光照射后形成激发态逐出电子经类似呼吸链的传递又回到菌绿素,使其恢复到原状态,期间产生ATP,但不产生还原力,不放出氧气。光合细菌属此类。