新靶向疗法能减缓或停止细胞分裂

美国普渡大学研究人员开发出一种新的癌症疗法,通过诱骗癌细胞吸收自然阻止细胞分裂的RNA片段来攻击肿瘤。在为期21天的研究过程中,接受新疗法治疗的肿瘤尺寸没有增加,而未经治疗的肿瘤在同一时期内尺寸增加了两倍。 癌症几乎可发生在人体的任何部位。其特点是细胞分裂不受控制,可能会忽略死亡或停止分裂的信号,甚至逃避免疫系统。新疗法在小鼠模型中进行了测试,将靶向癌细胞的输送系统与经过特殊修改的microRNA-34a结合起来,这种分子的作用“就像汽车的刹车一样”,能减缓或停止细胞分裂。 除了减缓或逆转肿瘤生长之外,靶向的microRNA-34a还强烈抑制至少3种基因(MET、CD44和AXL)的活性,这些基因已知会导致对癌症疗法产生耐药性。而这种疗法对抗已产生耐药性的癌症时,可单独有效使用,也可与现有药物结合使用。 microRNA-34a是一种短的双链核糖核酸,为了确保修饰后的microRNA-34a能够到达癌细胞,研究团队将双......阅读全文

细胞分裂研究带来癌症新靶标

  最近,结构生物学家在一项研究中表明,细胞分裂过程中一个明显关键的步骤,取决于特定蛋白质之间的一种独特的相互作用,包括一个与癌症密切相关的蛋白质。现在他们希望,这种相互作用的新特性,将使其成为探索癌症新疗法的一个靶标。相关研究结果发表在8月30日的《eLife》杂志。  细胞分裂或有丝分裂,是高中

新研究发现与心脏衰老有关的RNA片段

  研究人员在新一期英国《自然》杂志发表报告说,他们通过动物实验发现一种与心脏衰老有关的核糖核酸(RNA)片段,这一成果有望为心血管疾病的防治提供新思路。   德国法兰克福大学的研究人员说,衰老导致的心脏细胞减少和心脏功能减退是引发心血管疾病的重要原因,而一个被称为“miR-34a”的短RNA片段

新型微流控芯片识别RNA的小片段

  CRISPR / Cas技术不仅可以改变基因:根据弗莱堡大学的一项研究,通过使用所谓的基因剪刀,可以更好地诊断癌症等疾病。  在这项研究中,研究人员介绍了一种微流控芯片,该芯片可识别RNA的小片段,从而比目前可用的技术更快,更准确地指示特定类型的癌症。该结果最近发表在科学杂志“ Advanced

新型基因片段有望帮助开发抵御癌症新型疗法

  近日,一篇发表在国际杂志Nature上的研究报告中,来自德州农工大学的科学家们通过研究发现,人类基因STING(干扰素基因的刺激子)的一小片段或是治疗自身免疫性疾病和癌症的关键。文章中,研究者发现,一种特定的蛋白质基序或能帮助科学家们开发新型药物,来抑制引发自身免疫性障碍的人类机体未知免疫反应。

推动癌症发展的RNA结合蛋白

  最近,一项关于白血病细胞基因表达的研究,发现了一种RNA结合蛋白,在推动癌症的发展过程中起着重要的作用。该蛋白通常活跃在胎儿组织,在成年人体内是关闭的,但它在一些癌细胞中被再度活化。这种表达模式使它成为抗癌药物的一个有吸引力的靶标,因为阻断它的活动,不太可能造成严重的副作用。  这项新的研究,发

Nature解析癌症与非编码RNA

  人类基因组可生成1万多种长链非编码RNA(lncRNA) 分子,但人们至今却只知道其中几十种转录物的功能。在发表在8月14日《自然》(Nature)杂志上的一篇新研究中,来自加州大学的杨柳青(Liuqing Yang,音译)等研究人员揭示,两种lncRNAs结合并控制了雄激素受体的功能。

从聚丙烯酰胺凝胶中回收-RNA-片段

            试剂、试剂盒 溴化乙锭  洗脱缓冲液  储存液 8mol LLiCl 溶液   异丙醇   70% 乙醇   1XT

从聚丙烯酰胺凝胶中回收-RNA-片段

试剂、试剂盒 溴化乙锭 洗脱缓冲液 储存液 8mol LLiCl 溶液 异丙醇 70% 乙醇 1XTBE 缓冲液仪器、耗材 聚丙烯酰胺凝胶电泳槽 金属小铲 Whatman3 MM 滤纸 玻璃棒 表面皿 保鲜膜 透射紫外灯 刀片 Texta 笔 射线胶片实验步骤 一材料与设备1) 溴化乙锭:10 mg

什么是叶酸?叶酸的作用

由于最早是从菠菜叶中被分离出来,故名。叶酸的辅酶形式是四氢叶酸(图6[四氢叶酸的结构式]),它作为酶促转移一碳基团(如甲酰基等)的中间载体而在嘌呤类、丝氨酸、甘氨酸和甲基基团的生物合成中起作用。此外,叶酸在核蛋白的生物合成上也是不可缺少的。

研究发现癌细胞分裂“指挥官”!多种癌症或受益!

  伯明翰大学的研究人员发现,一种新的蛋白类型可以抑制乳腺癌肿瘤的生长。  近日一项发表在著名肿瘤学杂志上的研究发现了富含脯氨酸的同源异型蛋白(PRH)在乳腺癌肿瘤发展中的作用,进而有助于更好地确定患者的预后。  伯明翰大学癌症与基因组学研究所的Padma Sheela Jayaraman博士说:“

网格蛋白保证细胞正常分裂的作用介绍

  2012年9月,美国加州大学旧金山分校生物工程与治疗科学系教授弗朗西斯·布罗茨基和她的研究小组发现,如果没有网格蛋白,细胞分裂会变得极不规律,而这正是癌症等人类疾病的一个特征之一。  研究人员通过RNA干扰技术,向原有基因中注入一小段基因片段,以阻止网格蛋白的生成,删除了细胞中的网格蛋白。结果发

水稻金属耐受蛋白及编码基因、RNA干涉片段获发明ZL

  6月17日,由中科院华南植物园张美博士等科研人员完成的“水稻金属耐受蛋白OsMPT1及其编码基因和其RNA干涉片段”获得国家发明ZL授权(ZL号:ZL 201110249200.7)。   水稻是世界上最重要的粮食作物之一,是我国第一大粮食作物。工业“三废”的排放造成巨大的环境污染,特别是

2.9-从聚丙烯酰胺凝胶中回收-RNA-片段

从聚内烯酰胺凝胶中回收 RNA 片段最好的方法是粉碎浸泡法。此法能从变性胶屮很好的回收高纯度的单链 RNA。但是此法不适用于长转录产物,因为它既费时间效率又低,例如: 超过 3kb 的 RNA 的回收效率不到30%。但是对于回收小片段 RNA 此方法是十分有效的。试剂、试剂盒溴化乙锭洗脱缓冲液储存液

叶酸受体的结构

  叶酸是包括DNA合成、DNA修复和细胞分裂在内的很多生物过程所需的一种必要维他命。“正常”细胞表达数量相对较少的三个叶酸受体,它们在癌细胞中普遍过度表达;为此,它们是新的化疗方法和癌症造影剂的潜在目标。在这篇文章中,作者解决了人叶酸受体在它介导叶酸向细胞中的吸收与叶酸结合在一起的形式的X 射

自身细胞分裂引发突变-患不患癌症运气说了算?

  为什么人会患上癌症?因为他体内有一小撮细胞在不受控制地疯狂生长。为什么这些细胞失控了?因为它们发生了突变,多个突变积累最终导致正常细胞变成癌细胞。但这些突变是哪里来的呢?  多年以来,健康专家告诫道,癌症的出现是因为糟糕的饮食、缺乏锻炼或遗传自父母的基因错误。英国政府甚至建立了“十万基因组项目”

概述小儿叶酸缺乏病的发病机制

  叶酸是一组由蝶酸与谷氨酸结合而成,化学名称为蝶酰谷氨酸(pteroylglutamic acid)的一类化合物的统称。食物中多以多谷氨酸叶酸的形式存在,在肠道经叶酸结合酶水解为单谷氨酸叶酸而被肠黏膜吸收,经甲基化和还原作用,形成甲基四氢叶酸等多种活性形式发挥生理作用。肝脏是叶酸的主要储存部位,占

中科大揭示长片段非编码RNA促进肿瘤生长机制

  记者从中国科学技术大学获悉,该校生命科学学院吴缅和梅一德教授研究组,揭示了长片段非编码RNA通过调控肿瘤细胞瓦伯格效应促进肿瘤生长的机制。相关研究近日在线发表在国际著名学术期刊《细胞》子刊《分子细胞》。  肿瘤细胞即使在有氧状态下也优先进行糖酵解,而不是通过产能效率更高的氧化磷酸化途径为细胞生长

Science子刊公布癌症液体活检成果:评估肿瘤DNA片段大小

  液体活检已经成为了癌症检测的一大热门词汇,许多液体活检都是通过循环肿瘤DNA(ctDNA)进行检测,ctDNA就是肿瘤细胞遗传物质脱落后进入血液的碎片。  来自剑桥大学的科学家们建立了一种新方法,通过分析ctDNA的大小,在血液中检测难以追踪的肿瘤DNA(又称ctDNA),这种方法可提高对罹患脑

维生素B9的功能作用

四氢叶酸(THFA)是人体重要生化反应中一.碳单位的运载体,在嘌呤、胸腺嘧啶和肌酐-5磷酸的合成,甘氨酸与丝氨酸的相互转化,组氨酸向谷氨酸转化,同型半胱氨酸向蛋氨酸转化过程中充当一碳单位载体,因此不仅影响DNA和RNA合成,还可以通过蛋氨酸的代谢,影响磷脂、肌酸、神经介质以及血红蛋白的合成。因此,叶

Cell惊人发现:抑癌的tRNA片段

  多年来,科学家们一直对漂浮在从细菌到哺乳动物,包括人类在内各种细胞中的一些遗传物质短片段感到困惑。它们是细胞利用来生成蛋白质的一些遗传指令的片段,但由于长度太短而无法实现它们通常的用途。在本周的《细胞》(Cell)杂志上,来自洛克菲勒大学的研究人员发现了有关这些片段在人体中所起作用的一个重大线索

Cell惊人发现:抑癌的tRNA片段

  多年来,科学家们一直对漂浮在从细菌到哺乳动物,包括人类在内各种细胞中的一些遗传物质短片段感到困惑。它们是细胞利用来生成蛋白质的一些遗传指令的片段,但由于长度太短而无法实现它们通常的用途。在本周的《细胞》(Cell)杂志上,来自洛克菲勒大学的研究人员发现了有关这些片段在人体中所起作用的一个重大线索

非编码RNA为癌症研究提供新思路

  澳大利亚纽卡斯尔大学和中国科技大学等机构合作完成的两项最新研究表明,非编码RNA(核糖核酸)在癌症治疗方面存在巨大潜力,有助于开发出新型的癌症靶向治疗方法。  非编码RNA是指不编码蛋白质的RNA。长期以来,全球各地开展的癌症研究主要针对能编码蛋白质的基因,这些基因只占人类基因组的2%。  发表

简述卡培他滨的药理作用

  正常细胞和肿瘤细胞都能将5-FU代谢为5-氟-2-脱氧尿苷酸单磷酸(FdUMP)和5-氟尿苷三磷酸(FUTP)。这些代谢产物通过二种不同机制引起细胞损伤。首先,FdUMP及叶酸协同因子N5,10-亚甲基四氢叶酸与胸苷酸合成酶(TS)结合形成共价结合的三重复合物。这种结合抑制2’-脱氧尿[嘧啶核]

简述卡培他滨片的药理作用

  正常细胞和肿瘤细胞都能将5-FU 代谢为5-氟-2-脱氧尿苷酸单磷酸(FdUMP)和5-氟尿苷三磷酸(FUTP)。这些代谢产物通过二种不同机制引起细胞损伤。首先,FdUMP 及叶酸协同因子N5,10-亚甲基四氢叶酸与胸苷酸合成酶(TS)结合形成共价结合的三重复合物。这种结合抑制2'-脱氧

Nat-Commun:基于RNA分子的新型疗法有望治疗肺癌

  近日,一项刊登在国际杂志Nature Communications上的研究报告中,来自瑞典的科学家们表示,通过降低特殊RNA分子的活性就能使得小鼠肺部肿瘤缩小40%至50%,这或许是研究中的冰山一角,此外研究人员还从14类不同癌症中鉴别出了633个新型的生物标志物。 图片来源于网络

细胞分裂素与植物的细胞分裂

细胞分裂素与植物的细胞分裂密切有关,研究发现在拟南芥的主根中,细胞分裂素并不直接影响根分生组织区中的细胞分裂,而是主要通过控制拟南芥主根分生组织区的细胞分化速度,来影响分生组织区的大小。外源添加细胞分裂素,可以在不影响细胞分裂的情况下使主根的分生组织区变小;而部分参与细胞分裂素合成或信号转导途径的基

叶酸是什么

叶酸是胎儿生长发育不可缺少的营养素。孕妇缺乏叶酸有可能导致胎儿出生时出现低体重、唇腭裂、心脏缺陷等。如果在怀孕头3个月内缺乏叶酸,可引起胎儿神经管发育缺陷,而导致畸形。

叶酸的作用

   1、预防婴幼儿神经管畸形   由于孕妇对叶酸的需求量比正常人高4倍,而且孕早期是胎儿器官系统分化、胎盘形成的关键时期。此时如果叶酸缺乏,可导致胎儿神经管畸形发生率升高,甚至引起早期的自然流产。孕中、晚期更容易发生胎盘早剥、妊高症及巨幼红细胞性贫血。因此,准备受孕的女性,应该规律坚持服用叶酸。

网格蛋白在细胞分裂中起重要作用

  据物理学家组织网9月7日报道,美国加州大学旧金山分校的研究人员日前发现,网格蛋白不仅限于运送化学物质,在细胞分裂中也起着不可或缺的作用。该发现将有助于人们更好地理解染色体异常与癌症之间的关系。相关论文发表在《细胞生物学》杂志上。   网格蛋白存在于大多数动物的细胞中,单个网格蛋白看上去像是一个

Science子刊专题:癌症中的非编码RNA

  非编码RNA(尤其是microRNA)是众多细胞过程的关键调控子,与发育和癌症进程密切相关。本期Science Signaling杂志通过专题“Noncoding RNAs in cancer”,介绍了这类分子的生理和病理学功能。  发现哺乳动物基因组中的非编码RNA,不仅揭示了一类新的生物学调