液质联用中的质谱——真空系统篇

真空是质谱仪运作的必要条件之一,也是操作质谱仪前首先要准备的工作。真空度越高,代表气体压力越低。压力常用的单位有帕斯卡(Pascal)、巴(Bar)、毫巴(mbar)、托(Torr)等(1mbar=0.01 Pa=0.75 Torr)。mbar和Torr之间的换算在低压时通常可以忽略。商业TOF质谱仪的压力通常低于10-6 mbar,离子阱质谱仪的压力维持在10-5 mbar即可。 大多数质谱仪都必须串联低真空及高真空两种泵,而且开启时必须循序启动。质谱常用真空泵有三类。 1、粗抽泵(Roughing Pump):适用于1000~10-3 mbar 机械泵(Mechanical Pump)、隔膜泵(Diaphragm Pump)及涡卷式泵(Scroll Pump)都属于粗提泵,或前级泵(Fore Pump),需要机油润滑和经常性保养,运转时会产生噪声和高温。机械泵 2、高真空泵(High Vacuum Pump):适......阅读全文

液质联用中的质谱——真空系统篇

  真空是质谱仪运作的必要条件之一,也是操作质谱仪前首先要准备的工作。真空度越高,代表气体压力越低。压力常用的单位有帕斯卡(Pascal)、巴(Bar)、毫巴(mbar)、托(Torr)等(1mbar=0.01 Pa=0.75 Torr)。mbar和Torr之间的换算在低压时通常可以忽略。商业TOF

液质联用质谱图怎么分析

质谱分析是先将物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。质谱的样品一般要汽化,再离子化。不纯的样品要用色谱和质谱联用仪,是通过色谱进样。即色谱分离,质谱是色谱的检测器。离子在电场和磁场的综合作用下,按照其质量数m和电荷数Z的比值(m/z,质荷比)大小依次排列

液质联用质谱图怎么分析

质谱分析是先将物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。质谱的样品一般要汽化,再离子化。不纯的样品要用色谱和质谱联用仪,是通过色谱进样。即色谱分离,质谱是色谱的检测器。离子在电场和磁场的综合作用下,按照其质量数m和电荷数Z的比值(m/z,质荷比)大小依次排列

液质联用质谱图怎么分析

质谱分析是先将物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。质谱的样品一般要汽化,再离子化。不纯的样品要用色谱和质谱联用仪,是通过色谱进样。即色谱分离,质谱是色谱的检测器。离子在电场和磁场的综合作用下,按照其质量数m和电荷数Z的比值(m/z,质荷比)大小依次排列

液质联用质谱图怎么分析

质谱分析是先将物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。质谱的样品一般要汽化,再离子化。不纯的样品要用色谱和质谱联用仪,是通过色谱进样。即色谱分离,质谱是色谱的检测器。离子在电场和磁场的综合作用下,按照其质量数m和电荷数Z的比值(m/z,质荷比)大小依次排列

液质联用质谱图怎么分析

质谱分析是先将物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。质谱的样品一般要汽化,再离子化。不纯的样品要用色谱和质谱联用仪,是通过色谱进样。即色谱分离,质谱是色谱的检测器。离子在电场和磁场的综合作用下,按照其质量数m和电荷数Z的比值(m/z,质荷比)大小依次排列

液质联用质谱图怎么分析

质谱分析是先将物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。质谱的样品一般要汽化,再离子化。不纯的样品要用色谱和质谱联用仪,是通过色谱进样。即色谱分离,质谱是色谱的检测器。离子在电场和磁场的综合作用下,按照其质量数m和电荷数Z的比值(m/z,质荷比)大小依次排列

液质联用质谱发展史

液质联用质谱发展史早在19世纪末,E.Goldstein在低压放电实验中观察到正电荷粒子,随后W.Wein发现正电荷粒子束在磁场中发生偏转,这些观察结果为质谱的诞生提供了准备。世界上第一台质谱仪于1912年由英国物理学家Joseph John Thomson(1906年诺贝尔物理学奖获得者、英国剑桥

液质联用质谱图怎么分析

在质谱图中,横坐标表示离子的质荷比(m/z)值,从左到右质荷比的值增大;纵坐标表示离子流的强度,通常用相对强度来表示,即把最强的离子流强度(响应)定为100%,其它离子流的强度以其百分数表示。一般响应最高的为化合物的分子离子峰。通常,正离子模式下为M+H;负离子模式下为M-H

液质联用中的质谱——串联质谱篇(中)

  本文举几例常见的串联质谱仪,篇幅较长分为上、中、下三篇。  线性离子阱LIT/FTICR和LIT/Orbitrap  QqQ和QTOF都是串联两个“离子束”型分析器,近年来还有一种趋势是串联两个离子捕获型分析器,线性离子阱LIT/FTICR是此类最早的类型,由于维护困难,近年来慢慢被LIT/Or

液质联用中的质谱——串联质谱篇(上)

  在连接了前面的离子源、离子传输后,质谱的质量分析器还可以空间或时间的方式进行串联分析(MS/MS或MSn)。此时,第一个质量分析器用于选择与分离母离子(Parent Ion,又称前体离子Precursor Ion),被选择的母离子碎裂后产生子离子(Daughter Ion,又称产物离子Produ

液质联用中的质谱——串联质谱篇(下)

  本文举几例常见的串联质谱仪,篇幅较长分为上、中、下三篇。  串联质谱扫描方式  串联质谱的扫描方式包括以下几种:  1、子离子扫描/产物离子扫描/碎片离子扫描(Product Ion Scan/Fragment Ion Scan):  选择某一质量的母离子进入碰撞室,与碰撞室内的碰撞气体发生解离

质谱联用液质联用仪常见故障汇总

1.电源接通,LED指示灯不亮原因及解决措施:检查电源线是否正确连接,单相230V电源是否供应到电源板。2.仪器无法连接原因和解决措施:检查USB电缆的连接。检查仪器电源为接通后,重新启动PC。检查Lab solutions软件的环境设置。3.“STATUS” LED灯闪烁相关问题(1)“STATU

液质联用仪质谱的性能指

1、分辨率 能将两个相邻的质谐﹙质量相差1或小于1﹚予以分离的能力。低分辨率的液相色谱-质谱联用仪其质量分辨率一般用单位分辨率,若以u表示半峰宽所占的质量数,则单位分辨率的值为≤0.5u﹙ FWHM﹚,在全质量范围达3000时,按最高质量处的分辨率换算,可达6000﹙FWHM或称50%峰宽﹚,据已有

液质联用的质谱发展史

  早在19世纪末,E.Goldstein在 低压放电实验中观察到 正电荷粒子,随后W.Wein发现正电荷 粒子束在磁场中发生偏转,这些观察结果为 质谱的诞生提供了准备。  Joseph John Thomson  世界上第一台质谱仪于1912年由 英国 物理学家Joseph John Thomso

PE-Sciex-液相色谱/质谱/质谱联用仪

   仪器名称:PE Sciex 液相色谱/质谱   /质谱联用仪   仪器型号:API 3000   主要技术指标:    质量范围:5-3000amu多电荷的物质,   可检测的分子量范围达几万Da。    灵敏度:pmol   基本功能:   (1)质谱仪配有电喷雾源(ESI)

PE-Sciex-液相色谱/质谱/质谱联用仪

   仪器名称:PE Sciex 液相色谱/质谱   /质谱联用仪   仪器型号:API 3000   主要技术指标:    质量范围:5-3000amu多电荷的物质,   可检测的分子量范围达几万Da。    灵敏度:pmol   基本功能:   (1)质谱仪配有电喷雾源(ES

液相色谱质谱联用系统的其他应用

在生物、医药、农业、化学、精细化工等方面均可应用:1.蛋白质和多肽的研究(蛋白的分子量测定及序列分析,肽谱测定,巯基及二硫键定位,蛋白质翻译后修饰分析-磷酸化、糖基化或化学修饰位点的确认等);2.寡核苷酸和核酸的分析;3.多糖的结构的研究;4.中药活性组份和其它天然产物的分析、鉴定;5.药物代谢产物

液相色谱质谱联用仪包括串联质谱吗

液相色谱质谱联用仪(LC-MS)通常包括液相色谱(LC)和质谱(MS)两部分组成。在LC部分,目标化合物被分离并分解成小分子物质,然后进入MS部分,产生一系列离子化质谱片段,揭示样品的结构信息。联用LC-MS可以为复杂混合物的分析提供更高的分辨率和灵敏度。因此,联用质谱仪是一种非常强大的分析仪器,能

液质联用中的质谱——检测器

  质谱系统的关键要素是用于将质量分离离子流转换成可测量信号的检测器类型。常用的探测器包括:  1、电子倍增器(Electron Multiplier,EM)  离散金属板的串联连接,可将离子电流放大约108到可测量的电子电流。原理是让离子撞击到容易释放出二次电子的材质表面,二次电子经由重复撞击相同

液质联用中的质谱——离子传输篇

  在离子源离子化后,离子经过离子传输部分(习惯上称为Q0区)进入后续的质量分析器。最早的ESI在采样锥后使用了传输毛细管,可以进一步离子化,后面再经过六极杆或八极杆进行离子聚焦和传输。后来的商品化设计融入了各家的专利设计,比如有的采用加大孔径的毛细管,有的采用一组加了电压的锥板。在离子聚焦和传输部

液质联用仪分析质谱图的程序

  解析未知样的质谱图,大致按以下程序进行:解析分子离子区1, 标出各峰的质荷比数,尤其注意高质荷比区的峰。2,识别分子离子峰。首先在高质荷比区假定分子离子峰,判断该假定分子离子峰与相邻碎片离子峰关系是否合理,然后判断其是否符合氮律。若二者均相符,可认为是分子离子峰。3,分析同位素峰簇的相对强度比及

液相色谱-质谱联用实验

实验方法原理质谱分析法是通过对被测样品离子的质荷比的测定来进行分析的一种分析方法。被分析的样品首先要离子化,然后利用不同离子在电场或磁场的运动行为的不同,把离子按质荷比(m/z)分开而得到质谱,通过样品的质谱和相关信息,可以得到样品的定性定量结果。质谱分析法主要是通过对样品的离子的质荷比的分析而实现

液相色谱质谱联用仪

LC-MS联用仪主要由高效液相色谱,接口装置(同时也是电离源),质谱仪组成。高效液相色谱与一般的液相色谱相同,其作用是将混合物样品分离后进入质谱仪。此处从略。仅介绍接口装置和质谱仪部分。  LC-MS接口装置   LC-MS联用的关键是LC和MS之间的接口装置。接口装置的主要作用是去除溶剂并使样

液相色谱-质谱联用实验

实验方法原理 质谱分析法是通过对被测样品离子的质荷比的测定来进行分析的一种分析方法。被分析的样品首先要离子化,然后利用不同离子在电场或磁场的运动行为的不同,把离子按质荷比(m/z)分开而得到质谱,通过样品的质谱和相关信息,可以得到样品的定性定量结果。质谱分析法主要是通过对样品的离子的质荷比的分析而实

液质联用仪高效液相系统

高效液相系统高效液相色谱仪一般包括四个部分:高压输液系统、进样系统、分离系统和检测系统。此外,还可以根据一些特殊的要求,配备一些附属装置,如梯度洗脱、自动进样及数据处理装置等。

SCIEX-Topaz临床液质联用系统

SCIEX公司液质联用仪, 专为满足临床诊断实验室的独特需求而设计,降低了采用LC-MS的障碍,使整个临床实验室工作人员可以使用它

液质联用中的进样与质谱技术

ESI和APCI是大气压离子化(API)技术,与经典的质谱离子源处于低压(真空)条件下不同,样品的离子化是在大气压下进行的,因此APIMS要有从有从大气压之真空的接口及离子传输等装置。API是软电离技术,得到的质谱中主要是分子量信息。对于未知物分析,准确质量测定以及由此得到的化合物元素组成(分子式)

液质联用中的质谱——离子源篇

  质谱主要测定的是带电离子的质量,即质荷比(m/z)。质谱主要由几大部分构成:样品入口,离子源,质量分析器,检测器,数据系统,质量分析器和检测器(许多质谱的离子源)均在真空中,由真空泵来提供所需10-3-10-10 Torr的真空度。在液质联用中,样品入口即液相色谱的流出端接入离子源,在离子源和质

质谱联用(LCMS)液质联用仪常见故障汇总

1.电源接通,LED指示灯不亮原因及解决措施:检查电源线是否正确连接,单相230V电源是否供应到电源板。2.仪器无法连接原因和解决措施:检查USB电缆的连接。检查仪器电源为接通后,重新启动PC。检查Lab solutions软件的环境设置。3.“STATUS” LED灯闪烁相关问题(1)“STATU