生物传感器研究新进展,为动物体液中代谢物检测提供新思路

游离氨基酸是动物体内重要的小分子氨基酸。特定种类或多种氨基酸浓度的变化可用于动物机体营养和健康状态的评估,指导精准营养供给。赖氨酸与色氨酸为人体必需氨基酸,是动物限制性氨基酸,并可作为多种疾病的生物标志物。谷氨酸为非必需氨基酸,却是中枢神经系统中最丰富的兴奋性神经递质,在广泛的脑功能中发挥着重要作用。谷氨酸浓度异常会引起多种神经或精神疾病。因此,对赖氨酸、色氨酸和谷氨酸的快速检测是亟需解决的行业问题。 基于先前研究,中国科学院亚热带农业生态研究所印遇龙院士团队,将自行筛选获得的赖氨酸肽适体固定至聚苯胺修饰的玻碳电极上,构建了电流型赖氨酸生物传感器(具备抗无关蛋白干扰能力,可用于血清中赖氨酸的超灵敏检测,检测限为0.33nM);将自行筛选获得的色氨酸肽适体修饰到纳米金表面,构建了比色型色氨酸生物传感器(可用于血清中色氨酸的直接原位快速检测,检测限为1.0μM,无需专业的电化学设备,具有反馈快、简便易得、易读出等优势);将自行......阅读全文

关于兴奋性神经递质的简介

  兴奋性神经递质(excitatory amino acids,EAA)是指具有2个羧基和1个氨基的酸性游离氨基酸包括谷氨酸(Glu)、天门冬氨酸(Asp),是中枢神经系统的兴奋性神经递质。

兴奋性氨基酸的检测方法

方法:130只雄性Wistar大鼠随机分为烧伤即时复苏组(n=60)、烧伤延迟复苏组(n=50)和正常对照组(高原地区正常对照组n=10和兰州地区正常对照组n=10).前两组动物被制成高原(海拔3800m)烧伤实验动物模型(TBSA30%,Ⅲ度).运用高效毛细管电泳法检测脑组织中兴奋性氨基酸(谷氨酸

游离氨基酸检测传感器研发获新进展

游离氨基酸是动物体内重要的小分子代谢物,特定种类或者多种氨基酸浓度的变化可用于动物机体营养和健康状态的评估,指导精准营养供给。赖氨酸与色氨酸为人体必需氨基酸,也是动物限制性氨基酸;谷氨酸为非必需氨基酸,却是中枢神经系统中最丰富的兴奋性神经递质。因此,对赖氨酸、色氨酸和谷氨酸的快速检测是急需解决的行业

简述兴奋性神经递质的作用机理

  一、抑制作用的神经递质:如γ-氨基丁酸、甘氨酸等。  二、递质的作用对象  兴奋和抑制的对象不一定,如果该神经递质存在于突触间隙,则作用对象是神经细胞,若是存在于神经末梢,则作用对象是肌肉细胞。  三、递质的作用机理:  1.兴奋性递质作用机理:  突触小泡释放兴奋性化学递质,这些兴奋性化学递质

兴奋性神经递质乙酰胆碱的介绍

  乙酰胆碱是一种小分子的兴奋性神经递质,主要参与神经肌肉突触的神经传递用来控制迷走神经和心脏肌肉纤维,以及在骨骼和内脏等的运动系统和某些中枢神经系统内。乙酰胆碱能和许多突触后受体结合并导致突触后膜的去极化。从这个意义上讲,乙酰胆碱是兴奋性神经递质。

关于兴奋性神经递质的基本信息介绍

  谷氨酸是中枢神经系统含量最高、分布最广、作用最强的兴奋性神经递质。  a. 谷氨酸是脑内主要的兴奋性氨基酸神经递质。新皮质谷氨酸能神经元投射到纹状体、下丘脑核、丘脑。  (1)谷氨酸是小脑颗粒细胞的神经递质。  (2)谷氨酸是进入脑干和脊髓的非痛觉初级感觉传入纤维的神经递质。  (3)谷氨酸是皮

兴奋性神经递质5羟色胺的相关介绍

  5-羟色胺是一种抑制性神经递质,主要分布在中缝脑桥和上脑干中,并延伸到前脑区域的神经元, 用来调节睡眠和清醒。5-羟色胺能结合许多受体,包括5-HT3受体。低于正常水平的5-羟色胺活动已被证实和许多症状,尤其是抑郁症有关。

关于兴奋性神经递质谷氨酸的介绍

  谷氨酸是一种小分子氨基酸神经递质。这种分子能够结合包括NMDA受体,AMPA受体,红藻氨酸受体的的多个突触后受体。这些受体是阳离子的通道,能使带正电的离子,如Na +,K +,和有时Ca2 +进入突触后细胞,导致去极化从而激发神经元。

新型生物传感器提供更简单代谢物检测

被称为乳酸代谢物的全新概念生物传感器,将电子传输聚合物和乳酸氧化酶结合,生成专门催化乳酸氧化的酶。乳酸与关键的医疗参数相关,所以对它进行检测对医疗保健而言非常重要。生物传感器的性能取决于传感电极和酶之间的电子转换,酶活性位点与电极表面之间的距离缩小时,性能就会得到增加。氧化还原酶已经成为生物传感器的

什么是兴奋性氨基酸?

兴奋性氨基酸(excitatory amino acids,EAA)是指具有2个羧基和1个氨基的酸性游离氨基酸包括谷氨酸(Glu)、天冬氨酸(Asp),是中枢神经系统的兴奋性神经递质,尤其谷氨酸是中枢神经系统含量最高、分布最广、作用最强的兴奋性神经递质。

兴奋性神经递质儿茶酚胺的介绍

  包括肾上腺素 (Epinephrine),去甲肾上腺素 (norepinephrine) 和多巴胺 (dopamine)。肾上腺素主要位于横向被盖系统,髓质,下丘脑和丘脑的中枢神经系统。去甲肾上腺素主要位于脑干,并参与在睡眠和清醒,摄食和惊醒等行为。多巴胺能结合在大脑许多区域,特别是纹状体中的G

关于兴奋性氨基酸的简介

  兴奋性氨基酸(excitatory amino acids,EAA)是指具有2个羧基和1个氨基的酸性游离氨基酸包括谷氨酸(Glu)、天冬氨酸(Asp),是中枢神经系统的兴奋性神经递质,尤其谷氨酸是中枢神经系统含量最高、分布最广、作用最强的兴奋性神经递质。

营养学词汇兴奋性氨基酸

兴奋性氨基酸(excitatory amino acids,EAA)是指具有2个羧基和1个氨基的酸性游离氨基酸包括谷氨酸(Glu)、天冬氨酸(Asp),是中枢神经系统的兴奋性神经递质,尤其谷氨酸是中枢神经系统含量最高、分布最广、作用最强的兴奋性神经递质。

兴奋性氨基酸的作用和结构

兴奋性氨基酸(excitatory amino acids,EAA)是指具有2个羧基和1个氨基的酸性游离氨基酸包括谷氨酸(Glu)、天冬氨酸(Asp),是中枢神经系统的兴奋性神经递质,尤其谷氨酸是中枢神经系统含量最高、分布最广、作用最强的兴奋性神经递质。

关于兴奋性氨基酸的相关介绍

  方法:130只雄性Wistar大鼠随机分为烧伤即时复苏组(n=60)、烧伤延迟复苏组(n=50)和正常对照组(高原地区正常对照组n=10和兰州地区正常对照组n=10).前两组动物被制成高原(海拔3800m)烧伤实验动物模型(TBSA30%,Ⅲ度).运用高效毛细管电泳法检测脑组织中兴奋性氨基酸(谷

兴奋性神经递质谷氨酸转运蛋白配体结合模式的结构基础

  中枢神经系统中,谷氨酸(Glutamate)是含量最高、分布最广的兴奋性神经递质,通过激活突触后膜谷氨酸受体,参与大脑的学习和记忆等功能。突触间隙中兴奋性谷氨酸水平必须受到严格调节,以避免谷氨酸受体过度刺激导致的谷氨酸兴奋性毒性。表达于星形胶质细胞质膜上的兴奋性谷氨酸转运蛋白2(hEAAT2)利

关于兴奋性氨基酸的基本信息介绍

  在中枢神经系统的发育过程中,兴奋性氨基酸对同一脑区不同时期的影响是不同的,发育早期阶段是神经营养作用,发育后期则为“促毒性”作用。兴奋性氨基酸又受人类性激素的影响,从而调节脑发育。在脑发育早期,由于兴奋性氨基酸系统的过分营养作用,造成基底神经节和边缘系统神经元数目的不适当增加。  正常情况下兴奋

营养学词汇兴奋性氨基酸存在形式

在中枢神经系统的发育过程中,兴奋性氨基酸对同一脑区不同时期的影响是不同的,发育早期阶段是神经营养作用,发育后期则为“促毒性”作用。兴奋性氨基酸又受人类性激素的影响,从而调节脑发育。在脑发育早期,由于兴奋性氨基酸系统的过分营养作用,造成基底神经节和边缘系统神经元数目的不适当增加。正常情况下兴奋性氨基酸

神经递质的主要种类

按照神经递质的生理功能,可把神经递质分为兴奋性递质和抑制性递质,但也不尽然,有时同一物质既可以是兴奋性也可以是抑制性递质,如5-HT作用于不同受体,作用就不同。按照神经递质的分布部位,可分为中枢神经递质和周围神经递质,同样也不是绝对的,几乎所有的外周递质均在中枢存在。按照神经递质的化学性质,可分为胆

天门冬氨酸的生理功能

人体非必需氨基酸之一。一种脂肪族的酸性的极性α氨基酸。常见的L—天冬氨酸是组成蛋白质的常见20种氨基酸之一,也是蛋白质合成中的编码氨基酸之一。哺乳动物的非必需氨基酸和生糖氨基酸,神经递质。可作为哺乳动物中枢神经系统中重要的兴奋性神经递质受体之一。

药物及其代谢物检测方案大全

前言体内药物及其代谢产物的分析研究能为药浓度、药效和毒性之间的关系,为药物作用机理及药代动力学的研究提供科学的依据,因此近年来的进展令人瞩目, 已成为药物研究的重要分支,并形成了一门新型的学科,对现代医药科学发展,乃至人类健康,都具有十分重要的意义。在治疗药物监测、临床前药物代谢动力学研究和仿制药生

关于脑缺血再灌注损伤的基本信息介绍

  脑缺血  -再灌注也可造成脑功能严重受损。脑缺血时脑细胞生物电发生改变,出现病理性慢波,缺血一定时间后再灌注,慢波持续并加重。颞叶组织内神经递质性氨基酸代谢发生明显变化,即兴奋性氨基酸(谷氨酸和天门冬氨酸)随缺血  -再灌注时间延长而逐渐降低,抑制性氨基酸(丙氨酸、 γ -氨基丁酸、牛黄酸和甘氨

再帕尔·阿不力孜团队发表《Analytical-Chemistry》封面文章

  2021年4月,中国医学科学院药物研究所天然药物活性物质与功能国家重点实验室再帕尔·阿不力孜、贺玖明团队在分析化学一区《Analytical Chemistry》期刊发表封面文章,题为“Mapping metabolic networks in the brain by using ambien

癫痫的全身强直阵挛发作的发病机制

  1.遗传因素:单基因或多基因遗传均可引起痫性发作,已知150种以上少见的基因缺陷综合征表现癫痫大发作或肌阵挛发作,其中常染色体显性遗传病25种,如结节性硬化、神经纤维瘤病等,常染色体隐性遗传病约100种,如家族性黑?性痴呆、类球状细胞型脑白质营养不良等,以及20余种性染色体遗传基因缺陷综合征。 

部分性发作的发病机制

  1.遗传因素 单基因或多基因遗传均可引起痫性发作,已知150种以上少见的基因缺陷综合征表现癫痫大发作或肌阵挛发作,其中常染色体显性遗传病25种,如结节性硬化、神经纤维瘤病等,常染色体隐性遗传病约100种,如家族性黑蒙性痴呆、类球状细胞型脑白质营养不良等,以及20余种性染色体遗传基因缺陷综合征。 

概述部分性发作的发病机制

  1.遗传因素 单基因或多基因遗传均可引起痫性发作,已知150种以上少见的基因缺陷综合征表现癫痫大发作或肌阵挛发作,其中常染色体显性遗传病25种,如结节性硬化、神经纤维瘤病等,常染色体隐性遗传病约100种,如家族性黑蒙性痴呆、类球状细胞型脑白质营养不良等,以及20余种性染色体遗传基因缺陷综合征。 

氨基酸检测方法

  1. 分光光度法氨基酸检测:主要是利用氨基酸与衍生剂发生化学反应,产生蓝紫色化合物,该化合物在某一波长处有最大吸收峰,根据吸收值大小得到氨基酸含量。常用的衍生剂为茚三酮。分光光度法具有操作方便、仪器要求简单、成本低、应用范围广以及适用于芳香族氨基酸检测等特点。  2. 毛细管电泳法氨基酸检测:根

关于脑神经递质的神经递质的包装介绍

  合成好的神经递质要包装到囊泡中贮存,以待释放。不同的递质包装到不同的囊泡,它们在形态上能很容易区分。小分子递质如乙酰胆碱和氨基酸,被包装到直径为40~60nm的小囊泡中,位于囊泡膜上的递质转运体主动把胞质内合成好的小分子递质泵入囊泡内贮存。小囊泡电子密度低,在电镜下中心明亮,故称为中心明亮的小囊

脑损伤者用膳食补充剂来对抗困倦

  罹患创伤性脑损伤(TBI)的人在白天常常会有过度困乏,然而头部遭遇重击与嗜睡直接的关系仍然是一个谜。如今,研究人员报告说,一种含有支链氨基酸的食物补充剂可帮助有TBI的小鼠保持清醒和警觉。这些发现提示,支链氨基酸——它们已经作为膳食补充剂销售给运动员以改善其肌肉恢复而可被广泛地获取——可能有减

神经递质的作用及结构特点

神经递质(neurotransmitter)是神经元之间或神经元与效应器细胞如肌肉细胞、腺体细胞等之间传递信息的化学物质。根据神经递质的化学组成特点,主要有胆碱类(乙酰胆碱,acetylcholineAch)、单胺类(去甲肾上腺素、多巴胺和5-羟色胺)、氨基酸类(兴奋性递质如谷氨酸和天冬氨酸;抑制性