Nature:转座子编码的核酸酶利用向导RNA促进转座子自身的传播

基因组工程可能是医学的未来,但它依赖于数十亿年前在原始细菌中取得的进化进步,而原始细菌是最初的基因编辑大师。科学家们对这些古老的基因编辑系统进行改造,推动它们完成更加复杂的基因编辑任务。然而,要发现新工具,有时需要回顾过去,了解细菌最初如何创建原始的基因编辑系统,以及构建的原因。 在一项新的研究中,美国哥伦比亚大学的Sam Sternberg和他的博士后Chance Meers博士回顾了CRISPR-Cas9的前身---它们潜伏在所谓的“跳跃基因(jumping gene)”中---以揭示CRISPR的DNA剪刀是如何进化的。他们的发现揭示了数千种新发现的DNA剪刀是如何工作的,以及如何将它们设计成新的基因组工程技术。相关研究结果近期发表在Nature期刊上,论文标题为“Transposon-encoded nucleases use guide RNAs to promote their selfish spread”。......阅读全文

RNA-SI-核酸酶作图

            实验材料 [γ-32P」ATP 合适的寡核苷酸 DNA 模板l 10XdNTP 混合物 KLenow 片段 合适的限 制性内切核酸酶

RNA-SI-核酸酶作图

实验材料 [γ-32P」ATP合适的寡核苷酸DNA 模板l10XdNTP 混合物KLenow 片段合适的限 制性内切核酸酶X 射线胶片洗脱缓冲液tRNA 石蜡油S1 核酸酶试剂、试剂盒 10X 激酶缓冲液PNK10X 复性缓冲液6% 聚丙烯酰胺 8mol L 尿素溶液 (溶于 0.5XTBE) 及甲

5.5-RNA-SI-核酸酶作图

SI 核酸酶是种内切酶,它是从米曲霉米曲霉 (Aspergillusoryzae) 中分离得到。它能降解单链核酸,却不能降解双链核酸。此外,它能高灵敏度地降解局部错配的双链分子,即使只有一对碱基错配,也能因 S1 核酸酶的切割而被检测出来。用 S1 核酸酶来识别和切割错配或未复性的区域,再通过变性内

细菌RNA制备实验

革兰氏阴性细菌中提取 革兰氏阳性细菌中提取             实验材料 RNA 试

细菌RNA制备实验

实验材料 RNA试剂、试剂盒 STET氯仿乙酸钠氯化铯无水乙醇EDTA仪器、耗材 离心机分光光度计摇床实验步骤 1.  培养100 ml 大肠杆菌或500 ml 蓝细菌至对数生长期,加入1/20体积终止缓冲液,置于冰上。2.  于4℃用JA-10转子17 700 g 离心5 min 收集细胞。3.

需要RNA中间物的复制型转座的介绍

  逆转录转座子都需要RNA中间物,但LTR逆转录转座子和无LTR逆转录转座子在转座的具体步骤上有很大的差别。   LTR逆转录转座子进行转座时,形成cDNA的过程与逆转录病毒合成cDNA相同,双链cDNA通过剪切一黏接转座插入靶序列。无LTR逆转录转座子的转座过程较复杂,以LINE为例,转座的基

需要RNA中间物的复制型转座

逆转录转座子都需要RNA中间物,但LTR逆转录转座子和无LTR逆转录转座子在转座的具体步骤上有很大的差别。LTR逆转录转座子进行转座时,形成cDNA的过程与逆转录病毒合成cDNA相同,双链cDNA通过剪切一黏接转座插入靶序列。无LTR逆转录转座子的转座过程较复杂,以LINE为例,转座的基本过程如下:

用S1核酸酶对RNA作图

实验方法原理 三种不同的核酸酶——S1 核酸酶、RNA 酶、外切核酸酶Ⅶ被用来进行 RNA 定量,确定内含子位置,以及用来鉴定在克隆的 DNA 模板上的 mRNA 的 5' 端和 3' 端的位置。当检测 RNA 被杂交到 DNA 模板上时,用核酸酶 S1 进行保护试验的分析;

用S1核酸酶对RNA作图

三种不同的核酸酶——S1 核酸酶、RNA 酶、外切核酸酶Ⅶ被用来进行 RNA 定量,确定内含子位置,以及用来鉴定在克隆的 DNA 模板上的 mRNA 的 5' 端和 3' 端的位置。当检测 RNA 被杂交到 DNA 模板上时,用核酸酶 S1 进行保护试验的分析;当检测 RNA 被杂交

用S1核酸酶对RNA作图

            实验方法原理 三种不同的核酸酶——S1 核酸酶、RNA 酶、外切核酸酶Ⅶ被用来进行 RNA 定量,确定内含子位置,以及用来鉴定在克隆的 DNA 模板上的 mRNA 的 5' 端和 3' 端的位置。当检测 RNA 被杂交到

张锋团队首次在真核生物中发现CRISPR样系统

  CRISPR-Cas 系统是存在于原核生物(细菌和古菌)中的一类古老的免疫系统,用于抵御防御外源遗传元件(例如噬菌体)入侵。通过对该系统的研究,科学家们开发出了一系列强大的基因编辑工具,例如 CRISPR-Cas9,其通过 RNA 引导的 Cas9 核酸酶,对 DNA 进行切割,实现基因组编辑。

Cell免费论文:转录调控的新思路

  来自奥地利维也纳分子生物技术研究所的研究人员发现了转座子和piRNA对染色质模式,以及基因表达的广泛影响,对于未来深入探索这一沉默途径,以及染色质状态基因表达具有重要的意义。相关成果公布在Cell杂志上,目前可免费获取。   领导这一研究的是分子生物技术研究所的Julius Brennecke

细菌RNA制备实验——革兰氏阴性细菌中提取

实验材料RNA试剂、试剂盒STET氯仿乙酸钠氯化铯无水乙醇EDTA仪器、耗材离心机分光光度计摇床实验步骤1.  培养100 ml 大肠杆菌或500 ml 蓝细菌至对数生长期,加入1/20体积终止缓冲液,置于冰上。2.  于4℃用JA-10转子17 700 g 离心5 min 收集细胞。3.  用2

Cell发布piRNA重要发现

  来自东京大学的一个研究小组鉴别出了一种叫做“Trimmer”酶,其参与生成了保护生殖细胞基因组免遭不必要遗传重写的一类小RNA。  “跳跃基因”(又称转座子)是可以在基因组中四处移动的DNA小片段。它们可以破坏宿主基因,与癌症和其他一些疾病有关联。因此,生物体需要控制它们,尤其是在生成动物精子和

核糖核酸酶保护(用核糖核酸酶和放射性标记RNA探针)

            实验方法原理 核糖核酸酶保护分析用于度量特异性 mRNA 的丰度以及为它们的拓扑异构特征作图。这种方法包括测试 RNA 与互补的放射标记的 RNA 探针(核糖探针)杂交,然后未杂交的序列被一种或几种单链特异性的核糖核酸酶裂解。

可爱龙教授Cell评述重要结构生物学进展

  在所有的非编码RNA中, piRNA 数量最多, 主要存在于生殖系统,这种RNA在动物生殖组织中可以引导PIWI蛋白质沉默有害的转座子。其关键作用复合物:piRNA诱导沉默复合体piRISC的生物合成涉及多个步骤,至今科学家尚未清楚了解这个步骤的分子机制。  近期一组研究人员报道了PIWI-cl

核糖核酸酶保护(用核糖核酸酶和放射性标记的RNA探针...

核糖核酸酶保护(用核糖核酸酶和放射性标记的RNA探针对RNA作图)实验方法原理 核糖核酸酶保护分析用于度量特异性 mRNA 的丰度以及为它们的拓扑异构特征作图。这种方法包括测试 RNA 与互补的放射标记的 RNA 探针(核糖探针)杂交,然后未杂交的序列被一种或几种单链特异性的核糖核酸酶裂解。实验材料

用核糖核酸酶和放射性标记的RNA探针对RNA作图

核糖核酸酶保护分析用于度量特异性 mRNA 的丰度以及为它们的拓扑异构特征作图。这种方法包括测试 RNA 与互补的放射标记的 RNA 探针(核糖探针)杂交,然后未杂交的序列被一种或几种单链特异性的核糖核酸酶裂解。本实验来源「分子克隆实验指南第三版」黄培堂等译。实验方法原理核糖核酸酶保护分析用于度量特

采用Trizol-溶液提取细菌总RNA

实验概要了解用Trizol 溶液提取细菌总 RNA的方法。实验原理Trizol主要物质是异硫氰酸胍,它可以破坏细胞使RNA释放出来的同时,保护RNA的完整性。加入氯仿后离心,样品分成水样层和有机层。RNA存在于水样层中。收集上面的的水样层后,RNA  可以通过异丙醇沉淀来还原。无论是人、动物、植物还

转座子及转座子标签法克隆基因的改进

1 转座子及转座子标签法克隆基因基因标签法克隆植物组织中的基因是较为常用的一种方法,T-DNA和转座子均可作为基因标签。转座子最早由美国的细胞遗传学家Mc-clintock在玉米中发现,它是指基因组中一段特定DNA片段,能在转位酶的作用下从基因组的一个位点转移到另一个位点。转座子不仅能在本基因组中转

Cell Reports报道揭示非编码RNA和转座子在长寿中的作用机制

  3月21日,中国科学院-马普学会计算生物学伙伴研究所研究员韩敬东在《细胞-报告》(Cell Reports)上在线发表了题为Impact of Dietary Interventions on Noncoding RNA Networks and mRNAs Encoding Chromatin

上海生科院揭示非编码RNA和转座子在长寿中的作用机制

  3月21日,中国科学院-马普学会计算生物学伙伴研究所研究员韩敬东在《细胞-报告》(Cell Reports)上在线发表了题为Impact of Dietary Interventions on Noncoding RNA Networks and mRNAs Encoding Chromatin

应用Jurkat细胞研究核糖核酸酶P的M1RNA

探讨抗MHCⅡ类分子转录激活因子(CⅡTA)的M1-RNA抑制细胞表面MHCⅡ类分子的表达.M1-RNA是核糖核酸酶P的催化活性单位,设计并克隆针对CⅡTA第3408位点的M1-RNA(M1-3408-GS)及其相应的CⅡTA靶基因片段(3176-3560),分别插入pUC19、pGEM-7zf(+

应用Daudi细胞研究核糖核酸酶P的M1RNA

  探讨抗MHC-Ⅱ类分子转录激活因子(CⅡTA)的核糖核酸酶P对Daudi细胞表面MHC-Ⅱ类分子表达的抑制作用.  M1-RNA是核糖核酸酶P的催化活性单位.以pTK117质粒为模板,PCR扩增带有抗CⅡTA第452及629位点的引导序列的M1-RNA(M1-452-GS及M1-629-GS),

应用Jurkat细胞研究核糖核酸酶P的M1RNA

  探讨抗MHCⅡ类分子转录激活因子(CⅡTA)的M1-RNA抑制细胞表面MHCⅡ类分子的表达.  M1-RNA是核糖核酸酶P的催化活性单位,设计并克隆针对CⅡTA第3408位点的M1-RNA(M1-3408-GS)及其相应的CⅡTA靶基因片段(3176-3560),分别插入pUC19、pGEM-7

应用Daudi细胞研究核糖核酸酶P的M1RNA

探讨抗MHC-Ⅱ类分子转录激活因子(CⅡTA)的核糖核酸酶P对Daudi细胞表面MHC-Ⅱ类分子表达的抑制作用.M1-RNA是核糖核酸酶P的催化活性单位.以pTK117质粒为模板,PCR扩增带有抗CⅡTA第452及629位点的引导序列的M1-RNA(M1-452-GS及M1-629-GS),再分别插

integrate基因工具应用

  哥伦比亚大学的研究团队在霍乱弧菌中发现了一个独特的“跳跃基因”(转座子)后,开发了一种名为INTEGRATE的工具,可以在基因组中精准位置插入大片段基因而不引入DNA断裂。对于侧重于敲除和降解目标DNA、且屡受到脱靶困扰的CRISPR技术,这种新的、精准插入大片段的基因编辑工具有望提供重要的补充

表观遗传调控水稻重要农艺性状研究获进展

  转座子(transposon)是一段自身能够插入到基因组上的DNA片段,上世纪40年代,芭芭拉·麦克林托克(Barbara McClintock)首先在玉米中发现了转座子。从简单的细菌到复杂的人类,转座子广泛存在。转座子随机插入到重要基因中,会引发疾病、癌症和其他生理缺陷。DNA甲基化、组蛋

基因组的分类

病毒基因组病毒基因组可以由RNA或DNA组成。 RNA病毒的基因组包含单链或双链RNA,也包含一种或多种单独的RNA分子。 DNA病毒基因组可以是单链或双链DNA。大多数DNA病毒基因组由单个线性DNA分子组成,但有些由DNA病毒基因组由环状DNA分子组成  。原核基因组原核生物和真核生物基因组由D

报道转座子的定义

中文名称报道转座子英文名称reporter transposon定  义在转座子处插入报道基因,如某种抗性基因和酶基因等,作为这段序列是否发生转座的标记。应用学科生物化学与分子生物学(一级学科),基因表达与调控(二级学科)