Antpedia LOGO WIKI资讯

Nature子刊:北大BIOPIC发表新成像技术

细胞骨架是指真核细胞中的蛋白纤维网络结构,由微丝、微管和中间纤维组成。细胞骨架在细胞分裂、细胞生长、物质运输等多种重要活动中起到了非常关键的作用。在大肠杆菌中,肌动蛋白MreB是一种重要的细胞骨架蛋白。而EF-Tu(细菌延伸因子)主要在蛋白合成的延伸过程中发挥功能。研究这两种蛋白的相互作用,可以帮助人们更好的理解细胞中的蛋白翻译机制。 日前,北京大学生物动态光学成像中心(BIOPIC)的孙育杰研究组通过一个新的成像方法,在细胞中深入分析了MreB–EF-Tu的相互作用。这一成果发表在近期的Nature Communications杂志上。 成像技术可以帮助人们在细胞中对一组互作蛋白进行研究。不过,其他配对和非配对分子的荧光背景限制了这样的应用,尤其是在亚衍射的细胞区域。(延伸阅读:选对你的共聚焦显微镜) 为此,研究人员开发了一个新的成像方法。他们将双分子荧光互补技术与光敏定位显微镜结合起来,实现了对特定互作蛋白的超高分......阅读全文

小动物活体成像技术

1、背景和原理1999年,美国哈佛大学Weissleder等人提出了分子影像学(molecular imaging)的概念——应用影像学方法,对活体状态下的生物过程进行细胞和分子水平的定性和定量研究。传统成像大多依赖于肉眼可见的身体、生理和代谢过程在疾病状态下的变化,而不是了解疾病的特异性分子事件。

小动物活体成像技术概览(一)

1. 背景和原理:1999年,美国哈佛大学Weissleder等人提出了分子影像学(molecular imaging)的概念——应用影像学方法,对活体状态下的生物过程进行细胞和分子水平的定性和定量研究。传统成像大多依赖于肉眼可见的身体、生理和代谢过程在疾病状态下的变化,而不是了解疾病的特异性分子事

生物医学光学技术

  摘 要:随着生物分子光学标记技术的不断进步,光学技术在揭示生命活动基本规律的研究中正发挥越来越重要的作用,也为医学诊断与治疗提供了更多、更有效的手段。本报告首先简要介绍光学技术在生物医学应用中的发展概况,然后从基因表达及蛋白质—蛋白质相互作用研究方面,讨论生物分子光学技术的特点与优势,阐明基于分

生物医学光学技术

  摘 要:随着生物分子光学标记技术的不断进步,光学技术在揭示生命活动基本规律的研究中正发挥越来越重要的作用,也为医学诊断与治疗提供了更多、更有效的手段。本报告首先简要介绍光学技术在生物医学应用中的发展概况,然后从基因表达及蛋白质—蛋白质相互作用研究方面,讨论生物分子光学技术的特点与优势,阐明基于分

量子点活细胞成像应用的实验方案建议

   量子点(Quantum dot, QD)是一种新型荧光纳米材料,又称半导体纳米晶,呈近似球形,三维尺寸在2-10nm,具有明显的量子效应,其物理、光学、电学特性优于传统有机荧光染料,是新一代荧光标记探针的优质选择。    Chan等将量子点与传统有机荧光染料进行了光学特性的比较,发现量子点的

量子点活细胞成像应用的实验方案

量子点(Quantum dot, QD)是一种新型荧光纳米材料,又称半导体纳米晶,呈近似球形,三维尺寸在2-10nm,具有明显的量子效应,其物理、光学、电学特性优于传统有机荧光染料,是新一代荧光标记探针的优质选择。Chan等将量子点与传统有机荧光染料进行了光学特性的比较,发现量子点的荧光亮度是传统荧

ACS Chem. Biol │ 基于分子逻辑门细胞内脂质单分子成像追踪

  今天为大家介绍一篇ACS Chem. Biol.的文章 “A Molecular Logic Gate Enables Single-Molecule Imaging and Tracking of Lipids in Intracellular Domains”,文章的通讯作者是来自瑞士洛桑联

布鲁克收购纳米分析仪器厂商JPK 以丰富生物学测量业务

  分析测试百科网讯 马萨诸塞州──2018年7月12日,布鲁克公司宣布收购位于德国柏林的JPK Instruments AG(JPK)。 2017年,JPK Instruments的收入约为1000万欧元。JPK提供用于生物分子和细胞成像的显微镜检测器,以及对单个分子,细胞和组织间作用力力测量。J

超分辨显微技术浅析

光学显微成像的衍射极限生物医学成像技术是基础生物学研究和临床医学最重要的工具之一。回顾历史,已有多位科学家凭借在成像技术方面的突破获得诺贝尔奖。其中,Roentgen 因发现 X 射线获得 1901 年诺贝尔物理学奖; Zernike 因发明相衬显微镜获得 1953 年诺贝尔物理学奖; Ruska

图像流式细胞仪——流式细胞术的最新突破

 ImageStream是一种台式多谱段成像流式细胞仪(Multispectral Imaging Flow Cytometry),能够同时采集6个检测通道中的细胞图像。它将流式细胞检测与荧光显微成像结合于一身,既能提供细胞群的统计数据,又可以获得单个细胞的图像,从而提供细胞形态学、细胞结

质谱成像技术应用宝典

  现代生物学研究已经不再停留在仅从组织中识别一种特殊的化学成分,或者蛋白成分上了,我们需要精确的了解这些物质是如何分布,如何构成的,解答这些问题需要更进一步的实验技术,比如免疫组化或免疫荧光检测方法,但是这些技术需要特殊的抗体,而且效率低,偏差大。  因此研究人员将目光转向了质谱技术上,以质谱为基

首次实现同层超薄样品的超分辨光镜-电镜关联成像

  10月14日,中国科学院生物物理研究所徐涛课题组与徐平勇课题组合作,在Nature Methods上发表了题为mEosEM withstands osmium staining and Epon embedding for super-resolution CLEM 的研究论文。他们发展了第一个

Nature Methods:2016年最值得关注的八大技术

  《Nature Methods》盘点2015年度技术,选出了最受关注的技术成果:单粒子低温电子显微镜(cryo-EM)技术。 除此之外,也整理出了2016年最值得关注的几项技术,分别为:细胞内蛋白标记(Protein labeling in cells)、细胞核结构(Unraveling nuc

浅谈DeltaVision Elite活细胞成像系统

我们知道以往的固定组织或固定细胞成像揭示了非常多的自然秘密,给了我们很大的启示,但现在的科学研究则希望在最真实的条件下观察细胞。纵观显微镜的发展历史,直到15年前,科学家主要还是处理死细胞。现在,活细胞研究的重要性已经越来越被意识到。加拿大McGill大学成像实验室主任Claire M. B

生物医学光学技术(二)

表1 主要成像技术及应用场合(Nature Reviews 2002)成像方法 主要应用场合磁共振成像(MRI) 高对比度,用于表型、生理成像和细胞跟踪的最好的全方位成像系统。计算机层析成像(CT) 肺和骨癌成像超声成像 血管和介入成像正电子发射断层成像PET 分子代谢,如葡萄糖,胸腺嘧啶核苷等的成

走近分子影像学

分子影像学的出现是医学影像学发展史上的又一个里程碑,国家科技部、卫生部、国家自然科学基金委对分子医学、分子影像学的研究给予了高度的重视。然而,分子影像学毕竟是刚刚起步,极需多学科合作,尤其是跨学科间的交流与合作,才能促进分子影像学研究的顺利开展。分子影像学概念分子影像学(molecular imag

细胞原位铁蛋白分子的磁性成像 分辨率推进到了10纳米

  近日,中国科学院院士、中国科学技术大学教授杜江峰领导的中科院微观磁共振重点实验室成功研制细胞原位纳米磁共振成像实验平台,与中科院院士、中科院生物物理研究所研究员徐涛合作,实现了对细胞原位铁蛋白分子的磁性成像,将原位蛋白质磁成像分辨率推进到了10纳米。该研究成果以Nanoscale magneti

多光子显微镜成像技术:双光子显微镜角膜成像

角膜提供了眼睛的大部分折射能力,由5层组成(图1),从外到内依次是上皮层,鲍曼层、基质、角膜后弹力层(间质膜)、内皮层。图1 角膜的组织学结构上皮层负责阻挡异物落入角膜,厚约50μm,由三种细胞构成,从外到内依次是表层细胞、翼细胞和基底细胞。只有基底细胞可进行有丝分裂和分化,基底细胞的补充是由从角膜

利用改进的CAR-T治疗实体瘤大有可为

  CAR-T(Chimeric Antigen Receptor T-Cell Immunotherapy),即嵌合抗原受体T细胞免疫疗法。该疗法是一种出现了很多年但近几年才被改良使用到临床中的新型细胞疗法。在急性白血病和非霍奇金淋巴瘤的治疗上有着显著的疗效,被认为是最有前景的肿瘤治疗方式之一。正

国家基金委八大学部公布“优先发展领域及主要研究方向”

  “十三五”期间,通过支持我国优势学科和交叉学科的重要前沿方向,以及从国家重大需求中凝练可望取得重大原始创新的研究方向,进一步提升我国主要学科的国际地位,提高科学技术满足国家重大需求的能力。各科学部遴选优先发展领域及其主要研究方向的原则是:  (1)在重大前沿领域突出学科交叉,注重多学科协同攻关,

中国著名留美女教授《科学》介绍新型探针

来自哈佛大学化学与化学生物学系,分子与细胞生物学系,霍德华休斯医学院的研究人员介绍了一组特殊的荧光探针家族,实现了多色随机光学重建显微法(multicolor stochastic optical reconstruction microscopy),并利用这种方法以20-30纳米级别的分辨率演示了

小动物活体成像技术概览(二)

光在哺乳动物组织内传播时会被散射和吸收,光子遇到细胞膜和细胞质时会发生折射现象,而且不同类型的细胞和组织吸收光子的特性并不一样。在偏红光区域, 大量的光可以穿过组织和皮肤而被检测到。利用灵敏的活体成像系统最少可以看到皮下的500个细胞,当然,由于发光源在老鼠体内深度的不同可看到的最少细胞数是不同

活细胞成像技术--活细胞工作站介绍

我们知道以往的固定组织揭示了非常多的自然秘密,给了我们很大的启示,现在的科学研究则向在最真实的条件下观察自然发展。纵观显微镜的历史,直到15年前,科学家主要还是处理死细胞。现在,活细胞的应用已经非常普及了。 加拿大McGill大学成像实验室主任Claire M.Brown表示,要达到这个研

推动翻译分子成像边界

  为了实现个体化医疗,需要对健康和疾病个体在分子层面上有全面的了解,质谱分析技术的发展,增加了我们对细胞生物学的知识。与健康细胞相比,这些技术能让我们更深入地了解临床样本中的细胞会怎样出现异常。近年来,要将这些分子特征转化至临床结果和治疗方案,了解其分子的空间特性是非常必要的,并且这一趋势越来越显

如何选购凝胶成像分析系统(三)

(8)、软件功能不论何种计算机,它们都是由硬件和软件所组成,两者是不可分割的。人们把没有安装任何软件的计算机称为裸机。凝胶成像分析系统也不例外,硬件设备再好,如果不配上好的软件,也无法发挥它应有的功能。作为凝胶成像系统软件功能和用途都基本相似,这里我们介绍一下最关注的几个特点: A、软件的基本功能:

质谱成像技术的完美解释

现代生物学研究已经不再停留在仅从组织中识别一种特殊的化学成分,或者蛋白成分上了,我们需要精确的了解这些物质是如何分布,如何构成的,解答这些问题需要更进一步的实验技术,比如,免疫组化或免疫荧光检测方法,但是这些技术需要特殊的抗体,而且效率低,偏差大。因此,研究人员将目光转向了质谱技术上,以质谱为基础的

1100学者齐聚杭州 第二届质谱大会开幕

  分析测试百科网讯 2015年10月17日,第二届全国质谱分析学术报告会(质谱大会)在浙江大学紫荆港校区体育馆盛大开幕,本次大会由中国化学会、国家自然科学基金委员会主办,中国化学会质谱分析专业委员会、浙江大学化学系承办。浙江大学副校长罗建红教授、南京大学陈洪渊院士、中

新一代Nanoimager可轻松实现超分辨荧光成像

近年来,随着活细胞体系单分子荧光成像技术的发展,膜蛋白单分子研究,特别是受体动力学的研究,已成为目前单分子研究领域中最活跃的研究方向之一。近几年发展起来的超分辨成像技术因其能够突破光学衍射极限,而比传统光学显微镜具有更高的分辨率和更高的定位精度。英国Oxford Nanoimaging公司最新推

体内荧光成像技术的进展(三)

成像新策略的出现改进探针亲和性的多种途径探针同靶点的紧密和特异性结合通常是成像成功的关键。因为许多成像靶点都位于细胞表面之外,所以多途径原则可以用来改善探针的结合亲和性。最近有两篇文献报道了用于异种移植肿瘤αvβ3 整合素(integrin)体内成像的RGD(Arg-Gly-Asp )寡肽的

非侵入式光学成像检测疾病的早期分子标记

  分析测试百科网讯 包括肥胖,心血管疾病和癌症在内的慢性疾病通常始于细胞代谢的早期细微变化。现在,塔夫茨大学的研究人员开发了一种无创光学成像技术,可以检测这些变化,为新研究和潜在的治疗发展提供了一个早期的机会窗口。  “在出现可见的疾病症状和损伤之前,疾病始于与新陈代谢有关的分子的变化,这阻碍了组