Antpedia LOGO WIKI资讯

PLOS:高龄孕妇出生缺陷的分子机制

目前,美国达特茅斯学院的研究人员,通过研究果蝇细胞分裂发现了一种途径,可使我们更好地了解,引起高龄孕妇易于出生唐氏综合症胎儿的分子错误。 该研究首次表明,在DNA复制后新的蛋白质连接(protein linkages)出现在未成熟卵细胞中,这些替代连接是这些细胞长期保持减数分裂黏合(cohesion)所必不可少的。相关研究结果发表在2014年9月11日的《PLOS Genetics》杂志。 随着女性年龄的增长,她们的卵子也会衰老,在她们30几岁的时候,怀上唐氏综合症胎儿的机会急剧增加。大多数这样的怀孕是由减数分裂过程中出现的错误引起的,减数分裂是配子(或生殖细胞,精子和卵子)形成过程中进行的一种特殊有丝分裂。减数分裂出现错误,可导致具有错误染色体数目的配子产生,从而引起唐氏综合症。在唐氏综合症中,胎儿遗传了三份21号染色体拷贝(21三体)。卵母细胞的染色体分离错误,或未成熟的卵细胞,都是出生缺陷和妊娠丢失的主要原因。当女......阅读全文

研究揭示人类生育力新进展

  本文中,小编整理了多篇重要研究成果,共同解读科学家们在人类生育力研究上取得的新进展,分享给大家!  图片来源:blacklistednews.com  【1】Nature子刊:高龄生育风险不容忽视,孕妇男性后代心血管疾病风险升高!  doi:10.1038/s41598-019-53199-x 

大规模并行基因组测序技术(MPGS)在NIPT中的应用

  据报道,全世界每年出生的各种缺陷儿约790万,70%的出生缺陷系遗传因素所致,而染色体异常是最常见的遗传因素,其中21三体发病率最高,其发生机制为生殖细胞在进行减数分裂时21号染色体不分离,造成21号染色体拷贝增加。迄今为止,唐氏综合征没有有效的治疗方法,只能通过产前筛查与早期诊断才能减少或避免

大规模并行基因组测序技术(MPGS)在NIPT中的应用

  据报道,全世界每年出生的各种缺陷儿约790万,70%的出生缺陷系遗传因素所致,而染色体异常是最常见的遗传因素,其中21三体发病率最高,其发生机制为生殖细胞在进行减数分裂时21号染色体不分离,造成21号染色体拷贝增加。迄今为止,唐氏综合征没有有效的治疗方法,只能通过产前筛查与早期诊断才能减少或避免

增补4.8亿!生殖健康及重大出生缺陷防控申报指南发布

   “生殖健康及重大出生缺陷防控研究”重点专项(增补任务)2018年度项目申报指南  本专项聚焦我国生殖健康领域的突出问题,重点关注生殖健康相关疾病、出生缺陷和辅助生殖技术;开展以揭示影响人类生殖、生命早期发育、妊娠结局主要因素为目的的科学研究;实现遗传缺陷性疾病筛查、阻断等一批重点技术突破;建立

唐氏筛查,你想知道的全在这!

今天是3月21日,是一个特殊的日子,之所以说今天特殊,是因为今天这个日子的数字意义与我们医学上一种疾病的病名相吻合——21-三体综合征,有“3”亦有“21”。21-三体综合征俗称“唐氏综合征”,是由于人体内多了一条21号染色体造成的。    2011年12月,联合国大会

谢晓亮院士:单分子技术透视生命之谜

  2012和2013年,由北京大学多个研究团队合作完成的世界首个高精度人类男性和女性个人遗传图谱相关论文相继发表于《科学》和《细胞》杂志。这一工作采用的单细胞DNA扩增技术MALBAC,与以前的技术相比,该技术将单细胞全基因组测序的精确度大幅度提高,以至于能够发现个别细胞之间的遗传差异。  MAL

北大谢晓亮教授:单分子技术透视生命之谜

2012和2013年,由北京大学多个研究团队合作完成的世界首个高精度人类男性和女性个人遗传图谱相关论文相继发表于《科学》和《细胞》杂志。这一工作采用的单细胞DNA扩增技术MALBAC,与以前的技术相比,该技术将单细胞全基因组测序的精确度大幅度提高,以至于能够发现个别细胞之间的遗传差

年终盘点:2016年国内不容错过的重磅生物研究

  时间总是过得很快,2016年马上就要过去了,迎接我们的将是崭新的2017年,2016年,我国有很多优秀科研机构的科学家们都做出了意义重大、影响深远的研究成果,发表在国际顶级期刊上。本文中小编盘点了2016年我国科学家发表的一些重磅级研究,以饕读者。   --结构生物学 --  1.清华大学 施一

唐氏综合症新疗法:关闭细胞内多余染色体

  7月17日在Nature上发表的一份研究报告表明,插入一个基因片段可以让导致唐氏综合症的额外21号染色体副本“沉默”。该方法可帮助研究人员识别疾病症状背后的细胞通路,并设计针对性的治疗方法。   “这种策略可以通过多种方式被使用,而且我认为它现在就可以发挥作用,” 伍斯特马萨诸塞医学院的细胞生

无创基因产前检测之争:该技术陷未检测到唐氏儿纠纷

  无创基因产前检测之争  该技术在多地陷入未检测到唐氏儿纠纷;国家卫健委表示此技术在340家医疗机构开展,仍存在假阴性和检测失败病例  两年前,38岁的杨柳二胎女儿璐璐出生,体重8斤,不哭不闹,像只安静的布娃娃。杨柳甚是喜爱。璐璐的染色体核型分析报告单  这场喜悦持续了42天。随后,璐璐被诊断为唐

国家重大科学研究计划2011年度重要支持方向确定

各省、自治区、直辖市、计划单列市科技厅(委、局),新疆生产建设兵团科技局,国务院各有关部门办公厅(室):  国家重大科学研究计划是《国家中长期科学和技术发展规划纲要(2006-2020年)》(以下简称《规划纲要》)部署的、引领未来发展、对科学和技术发展有很强带动作用的基础研究发展计划。  

eLife解答达尔文的“谜中之谜”

  Fred Hutchinson癌症研究中心的研究人员将发酵茶叶和啤酒的两种酵母进行杂交,为人们揭示了杂交不育背后的分子机制。研究显示,酵母杂交之后迅速出现了多种生殖屏障,帮助划清种属之间的界限。这项研究使用了非洲人酿造啤酒的粟酒裂殖酵母(Schizosaccharomyces pombe),及其

中国学者两项成果同登PLoSGenetics

  来自中科院遗传与发育生物学研究所程祝宽课题组发表了题为“The Role of Rice HEI10 in the Formation of Meiotic Crossovers”的文章,在水稻中鉴定出了HEI10基因,这是水稻中分离的第一个可以用于指示重组位置的标记蛋白,相关研究为在水

基因测序新技术走向前台 酝酿千亿规模市场

  当一颗精子钻入卵细胞后,一个生命的冒险之旅就启动了。经过有丝分裂、减数分裂,携带父母亲遗传密码的受精卵逐渐发育成胚胎。然而,并不是所有遗传指令都能被正确传达,突发的错误将让小小生命体遭受巨大的劫难——或过早夭折,或带着不可治愈的缺陷降生。  对于奉行物竞天择法则的动物世界来说

两位教授今日发表Cell文章 获减数分裂研究重大突破

  减数分裂是有性生殖的必经过程。精子和卵细胞必须经过减数分裂才能产生。减数分裂过程要发生同源染色体配对、联会和重组等复杂的事件。交叉重组(crossover)是减数分裂的核心事件。交叉重组建立同源染色体之间的物理连接,保证染色体正确分离;同时会引起双亲遗传物质相互交换,增加物种的遗传多样性。如果交

夏国良与张美佳师生俩的SCIENCE故事

  一个世纪以来,生殖生物学中有一个未解的谜团,那就是:是什么物质抑制了卵母细胞的成熟?最近,这一谜团得以解开。  中国农业大学农业生物技术国家重点实验室夏国良教授课题组和美国杰克逊研究所John Eppig教授课题组合作研究成果证实:卵泡中的颗粒细胞分泌C-型钠肽及其受体NPR2是

张亮然: 揭秘“生命缺陷”, 可以有另一种姿势

  一座大山,有人从这边爬,有人从那边爬,看谁能找到一个更好走、更正确的路。这直接决定了谁能上去。  人物名片  张亮然,生于 1977 年 7 月,系山东大学“齐鲁青年学者”特聘教授。2006 年于中国科学院植物研究所获得植物学博士学位。同年进入哈佛大学细胞与分子生物学系南希院士实验室工作。201

2017年3月Cell期刊不得不看的亮点研究

  3月份即将结束了,3月份Cell期刊又有哪些亮点研究值得学习呢?小编对此进行了整理,与各位分享。  1.Cell:长生不老药有望即将来临  doi:10.1016/j.cell.2017.02.031  在一项新的研究中,研究人员发现一种肽能够选择性地寻找和破坏阻止组织正常更新的衰老细胞,并且证

《HMG》:华人学者解析染色体缺失疾病

  在2010年,意大利科学家报道称,一名妇女和她的女儿表现出一系列令人费解的障碍,包括癫痫和腭裂。这位母亲曾经失去一个15天大的儿子,死于呼吸衰竭,该研究小组注意到,这位母亲和女儿在其X染色体上都有一大块DNA缺失。但是研究人员无法明确说明这些问题与基因缺失之间有关联。   目前,宾夕法尼亚大学

Science揭秘:女性生育能力随年龄增长下降背后的机制

  女性的生育能力呈现倒U形曲线,在进入青春期前和30岁之后生育能力较低,24岁至29岁则是女性的最佳生育年龄。到底是什么原因造成这种现象呢?《Science》杂志发表的一篇文章或能给出答案。DOI: 10.1126/science.aav7321  近日,丹麦哥本哈根大学细胞与分子医学系研究负责人

港台科研人员近期两项重要研究成果

9月,来自香港大学的范上逵教授在《PNAS》上发表了肝脏肿瘤的最新研究成果。另外,来自台湾中研院的王惠钧副院长和同事也在国际知名学术杂志上发表了有关DNA损伤修复和重组酶的重要文章。 港大范上逵教授等《PNAS》文章 在9月4日的《PNAS》杂志的网络版上公示了一篇由香港大学外科学系和肝病研究中

中科院孙青原等人在PLOSGenetics发表最新遗传学成果

近期,来自中科院动物研究所、首都师范大学和深圳大学等处的研究人员,在国际遗传学权威期刊《PLOS Genetics》发表题为“Protein Phosphatase 6 Protects Prophase I-Arrested Oocytes by Safeguarding Genomic Inte

遗传发育所在同源重组机制研究中取得进展

  减数分裂是维持生物体染色体数恒定,导致遗传重组产生的基础。减数分裂缺陷是导致不孕、不育和出生障碍的主要原因。绝大多数减数分裂基因在不同物种中有着高度保守的功能。HEI10基因最初在人类体细胞中分离,并证明有调控细胞周期的功能。在小鼠中的研究表明,HEI10基因的突变会导致减数分裂异常并最终导致不

2019中国生命科学领域CNS盘点:曹雪涛 颜宁 施一公上榜

  截至2019年12月23日,中国学者在Cell,Nature及Science在线发表了107篇文章(2019年的Cell ,Nature 及Science 已经全部更新),iNature团队对于这些文章做了系统的总结:  按杂志来划分:Cell 发表了31篇,Nature 发表了44篇,Scie

Nature重磅:母亲孕期缺乏维C竟会导致这些严重后果

  在人体内,维生素C是高效抗氧化剂,用来减轻抗坏血酸过氧化物酶的氧化应激。还会参与有许多重要生物合成过程。  大多数哺乳动物都能靠肝脏来合成维生素C,所以并不存在缺乏的问题。  然而,人类、灵长类动物、土拨鼠等少数动物却不能自身合成维生素C,因此,人类必须通过食物、药物等获取维生素C。  由于蔬菜

2015国家自然科学基金:表观遗传学什么是重点

  来自国家自然科学基金委员会的消息,8月18日国家自然科学基金委员会公布了2015年国家自然科学基金申请项目评审结果,其中面上项目16709项、重点项目624项、创新研究群体项目38项、优秀青年科学基金项目400项、青年科学基金项目16155项、地区科学基金项目2829项、海外及港澳学者合作研究基

2019年中国学者86篇Cell,Nature及Science文章汇总

  2019年上半年很快就结束了,iNature盘点了中国学者在Cell,Nature及Science发表的成果,我们发现总共有86篇(截至2019年6月24日),具体介绍如下:  4-6月发表的文章  【1】2019年6月21日,西北工业大学王文,中科院昆明动物研究所/BGI 张国捷及丹麦哥本哈根

华裔牛人Cell子刊:至关重要的干细胞调控因子

  来自耶鲁大学医学院的研究人员证实,在果蝇睾丸中Piwi是成体干细胞和生殖干细胞两者的关键调控因子。这一重要的研究发现发布在6月25日的《Cell Reports》杂志上。  领导这一研究的是现任美国耶鲁大学终身教授林海帆( Haifan Lin)。其长期从事干细胞研究,曾证实人体干细胞微环境存在

Science雄文颠覆教科书!自私的基因改写遗传学基本定律

  每个人的体细胞内都有23对染色体,一半来自父亲,一半来自母亲。我们又会将这些染色体通过减数分裂,让其中一半进入生殖细胞,传给下一代。依照教科书上的遗传学经典定律,一对染色体的分配过程是随机的,每一条染色体都有50%的机会,非常公平。  但随着分子生物学的发展,人们对减数分裂有了更详尽的认识。科学

哈佛大学研究人员发现塑料助剂可导致DNA损伤

  多年以来,科学家们一直认为DEHP(邻-苯二甲酸二辛酯的缩写,一种增加塑料柔韧性的化学添加剂)会增加健康风险,其中包括出生缺陷和男性不育等生殖疾病。但目前尚不清楚DEHP对人体的确切影响以及安全接触量。美国联邦及各州的相关机构在法律层面对儿童玩具、食品包装、饮用水等物品中的DEHP和其他邻苯二甲