JASCO荣获2007“分子手性奖”

[2007年6月28日 JASCO, Inc.] 分子手性研究机构于5月15-16日在日本东京理工大学举行了年度分子手性研讨会。该组织从1999年起设立“分子手性奖”,该奖项用于奖励在分子手性领域作出杰出贡献的科学家和公司。今年的分子手性奖分别授予了大阪城市大学的Hiroshi Tsukube教授和日本分光公司JASCO。 近250位专家学者参加了此次会议,大会特邀美国默克研究实验室的Christopher Welch先生和西班牙巴塞罗纳大学的Josep M. Ribo教授等做了大会报告。分子手性研讨会是1992年由日本药物学院发起的,旨在促进手性药物科学的发展。该会议由日本化学会和其他6个日本科学学院主办。涉及的学科也在逐渐扩大,包括有机合成、天然产物、药理学、药物化学、聚合物化学等。  ......阅读全文

JASCO荣获2007“分子手性奖”

     [2007年6月28日 JASCO, Inc.] 分子手性研究机构于5月15-16日在日本东京理工大学举行了年度分子手性研讨会。该组织从1999年起设立“分子手性奖”,该奖项用于奖励在分子手性领域作出杰出贡献的科学家和公司。今年的分子手性奖分别授予了大阪城市大学的Hiroshi Tsuku

手性传感器识别法鉴别手性分子

手性传感器识别法具有简单快捷、高效灵敏和选择性高的特点。电化学传感器主要通过主体选择性键合客体分子引起传感器的电信号变化而实现手性识别;荧光传感器基于对映体分子和手性选择剂形成缔合物的荧光差异来实现识别。在压电传感器中,手性选择膜镀在石英晶体上,当手性分子与手性膜发生作用时,会引起石英晶体的质量和振

什么是手性分子?

手性分子是指与其镜像不相同不能互相重合的具有一定构型或构象的分子。手性一词来源于希腊语“手”(Cheiro),由Cahn等提出用“手性”表达旋光性分子和其镜影不能相叠的立体形象的关系。手性等于左右手的关系,彼此不能互相重合。所有的手性分子都具有光学活性,同时所有具有光学活性的化合物的分子,都是手性分

什么是手性分子?

手性分子是指与其镜像不相同不能互相重合的具有一定构型或构象的分子。手性一词来源于希腊语“手”(Cheiro),由Cahn等提出用“手性”表达旋光性分子和其镜影不能相叠的立体形象的关系。手性等于左右手的关系,彼此不能互相重合。所有的手性分子都具有光学活性,同时所有具有光学活性的化合物的分子,都是手性分

手性分子的应用

获得手性分子的重要意义一 药物与人类的关系:构成生命体系的生物大分子大多数是以一种对映体形式存在的。故药物与其作用也是以手性的方式进行的,生物体的酶和细胞表面受体是手性的,故对外消旋药物的识别、消化和降解过程也是不同的。手性分子的来源自然界:糖类、氨基酸、生物破、萜类、 甾体化合物不对称有机合成反应

药物分子手性的意义

手性药物?指只含有单一对映体的药物为手性药物。手性药物是二十一世纪发展的重要方向手性似乎有些陌生又有些时髦,实际上手性在自然界是非常普遍的现象,在化学里就是一种同分异构现象。含有两个互为对映异构体的化合物称为手性化合物,其中仅含一个对映体的化合物称为光学纯手性化合物,分别含有这样化合物的药物称为手性

化学所用外消旋分子组装手性结构识别与检测手性分子

  手性分子与手性结构广泛存在于自然界中,手性分子的合成与拆分,手性分子识别以及手性结构的形成与功能化是分子化学、超分子化学的重要课题之一。在国家自然科学基金委和科技部的大力支持下,中国科学院化学研究所胶体界面与化学热力学院重点实验室的科研人员,在超分子手性、手性纳米结构的构建以及分子识别方面取得了

色谱法鉴别手性分子

色谱法可满足各种条件下对映体拆分和测定的要求,能够快速对手性样品进行定性、定量分析和制备拆分。目前,高效液相色谱、气相色谱、超临界流体色谱、模拟移动床色谱和毛细管电泳等在手性研究中得到了广泛应用。其 中,高效液相色谱法(HPLC)进行手性药物对映体的光学拆分已成为药学研究中的一大热点,开发一些新型、

手性分子的识别有哪些?

手性识别与分离的技术发展迅速,其中色谱法、传感器法和光谱法等具有适用性好、应用范围广、灵敏度高、检测速度快等优点,在分离识别和纯化手性化合物中受到研究者的极大关注。

手性分子的基本概念

在偏振光发现之后,人们很快认识到某些物质能使偏振光的偏振面发生偏转,产生旋光现象。1848年法国巴黎师范大学年轻的化学家Pastenr细心研究了酒石酸钠铵的晶体及水溶液的旋光现象,从而得出物质的旋光性与分子内部结构有关,提出了对映异构体的概念。人们在研究对映异构体时,由左旋和右旋两种对映异构体的分子

光谱法鉴别手性分子

采用紫外光谱、荧光光谱、红外光谱和圆二色光谱等考察手性选择剂和手性底物的混合溶液在光谱上的细微变化,辅助以化学计量学分析或其他光谱联用也可用于手性识别研究。

手性季碳分子制备新策略

  手性四取代碳中心分子的制备是不对称合成中最具挑战的领域之一。然而,直接不对称催化策略高度依赖于潜手性底物两个取代基的电性和/或位阻的不同,当四取代碳中心分子中含有多个电性和位阻相近的取代基时,目前的不对称催化策略难以实现此类分子的制备。  在中科院战略性先导科技专项、国家自然科学基金、福建省自然

手性分子的识别方法解释

手性识别与分离的技术发展迅速,其中色谱法、传感器法和光谱法等具有适用性好、应用范围广、灵敏度高、检测速度快等优点,在分离识别和纯化手性化合物中受到研究者的极大关注。色谱法色谱法可满足各种条件下对映体拆分和测定的要求,能够快速对手性样品进行定性、定量分析和制备拆分。目前,高效液相色谱、气相色谱、超临界

手性分子的普遍重要性

手性是宇宙间的普遍特征,体现在生命的产生和演变过程中。例如,自然界存在的糖以及核酸、淀粉、纤维素中的糖单元,都为D-构型;地球上的一切生物大分子的基元材料α-氨基酸,绝大多数为L-构型;蛋白质和DNA的螺旋构象是右旋的;而且人们还发现,海螺的螺纹和缠绕植物也都是右旋的。面对这充满手性的自然界,人们不

新型“分手”利器可高效分离手性分子

生物分子COF 1作为手性固定相用于手性拆分(南开大学供图)   化学界中,有一大类分子存在手性异构体,它们就像左右手,虽然看上去一模一样,但完全不能重叠,这类分子被称为“手性分子”。  一些药物中的手性分子在生物活性、代谢过程和毒性等方面存在显著差别,有的差异甚至如“治病”和“致病”这样,是天壤之

手性分子液相色谱仪分类方法

手性分子液相色谱仪分类方法有多种。1、按功能可分:分析型手性分子液相色谱仪和制备型手性分子液相色谱仪。2、按灵敏度可分:微量手性分子液相色谱仪和痕量手性分子液相色谱仪。3、按进样自动性可分:手性分子自动进样液相色谱仪和手性分子手动进样液相色谱仪。4、按色谱柱可分:手性分子填充柱液相色谱仪和手性分子毛

手性分子R/S构型的命名方法

手性分子R/S构型的命名方法,由Cahn-In-gold-Prelong提出,故简称CIP法。因该法较D/L法具有显著的优点,故一经刊出,便很快得到广泛采用,并于1970年由IUPAC正式推荐使用。用CIP法命名手性分子的R/S构型时,一般分两步进行,首先定出手性元素(手性中心,手性轴和手性面等)上

手性分子合成救星——不对称催化

2021年度诺贝尔化学奖被授予德国有机化学家利斯特和美国有机化学家麦克米伦,以表彰他们在“发展不对称有机催化”方面做出的卓越贡献。不对称有机催化深刻地影响了药物研究:它简化了药物合成中的环节、降低了能源消耗,使化学合成更简捷、环保、经济。我们的生活和工业生产都离不开各种化学合成产品,催化剂是化学家用

手性的概念及手性物质分离的意义

一、手性及对映异构体的定义:物体与其镜像不能重叠的现象称为手性。 两种互为镜像关系且不能重叠的分子称为手性分子,又称对映异构体。二、手性分子的特点:手性分子的结构差别很小,具有相同的熔点、沸点、偶极矩、折光率和光谱性质等,与非手性试剂作用时,其化学性质一样,很难用一般的物理或化学方法区分。但它们对平

手性的概念及手性物质分离的意义

一、手性及对映异构体的定义:        物体与其镜像不能重叠的现象称为手性。          两种互为镜像关系且不能重叠的分子称为手性分子,又称对映异构体。二、手性分子的特点:        手性分子的结构差别很小,具有相同的熔点、沸点、偶极矩、折光率和光谱性质等,与非手性试剂作用时,其化学性

手性分离色谱

是采用色谱技术(TLC、GC和HPLC)分离测定光学异构体药物的有效方法。由于许多药物的对映体(Enantiomer)之间在药理、毒理乃至临床性质方面存在着较大差异,有必要对某些手性药物进行对映体的纯度检查。(一)原理和方法:对映体化合物之间除了对偏振光的偏转方向恰好相反外,其理化性质是完全相同的,

手性的概念

手性一词指一个物体不能与其镜像相重合。如我们的双手,左手与互成镜像的右手不重合。手性一词在化学医药领域运用更加普遍,一个手性分子与其镜像不重合,分子的手性通常是由不对称碳引起,即一个碳上的四个基团互不相同。通常用(RS)、(DL)对其进行识别。手性现象在自然界中也广泛存在。手性是自然界的基本属性。

太阳系外首次发现手性分子

  美国研究人员14日报告说,他们在太阳系外的星际空间中首次发现一种被称为“手性分子”的有机分子,这将有助于破解手性分子乃至生命在宇宙中的最初起源之谜。   当两种化合物的分子结构像人的左右手一样呈镜像对称但又不能互相重叠时,它们互为手性分子。这种特性让两种化合物在物理性质上相同,但在毒性等化学性质

化学所超分子手性组装研究获进展

  作为三维物体的基本属性之一,手性广泛存在于自然界中,大到宇宙中的银河系、小到微观的分子、粒子体系。对于手性的研究不仅有助于我们加深对地球生命甚至是宇宙起源的认识,而且在生命科学、制药以及材料科学等领域也有着非常重要的现实作用。在手性研究中,除了分子层次的手性以外,分子以上层次尤其是纳米尺度上的手

有旋光性的分子一定有手性吗

判断一个化合物是不是手性分子,一般可考查它是否有对称面或对称中心等对称因素.而判断一个化合物是否有旋光性,则要看该化合物是否是手性分子.如果是手性分子,则该化合物一定有旋光性.如果是非手性分子,则没有旋光性.所以化合物分子的手性是产生旋光性的充分和必要的条件.

手性的结构特点

手性广泛的存在于自然界中,在多种学科中表示一种重要的对称特点。如果某物体与其镜像不同,则其被称为“手性的”,且其镜像是不能与原物体重合的,就如同左手和右手互为镜像而无法叠合。手性物体与其镜像被称为对映体(enantiomorph,希腊语意为“相对/相反形式”);在有关分子概念的引用中也被称为对映异构

科学家首次用光改变人造超分子手性

  据物理学家组织网7月11日(北京时间)报道,美国科学家首次研制出一种人造分子,可用一束光改变其手性,这种分子可应用于包括生物医学研究、国土安全和超高速通讯在内的太赫兹技术领域,相关研究发表在《自然·通讯》杂志上。   手性分子是化学中结构上镜像对称而又不能完全重合的分子。该类分子具有迥然不同的

沃特世推出全新手性和非手性分离色谱柱

  沃特世推出全新手性和非手性分离色谱柱,扩展了ACQUITY UPC2产品组合   隆重推出ACQUITY UPC2 Trefoil和Torus技术色谱   瑞士巴塞尔——(美国商业资讯)——2014年10月8日——沃特世公司(纽约证券交易所代码:WAT)今日隆重推出了适用于手性和非手性分离

化学所在短肽分子手性可控组装方面获进展

  β-淀粉样蛋白多肽的核心识别序列—苯丙氨酸二肽不仅具有超强的自组装能力、易于化学修饰和生物降解等优点,还具有天然的手性特征。以苯丙氨酸二肽作为模仿生物体手性组装的简易模型,对于理解Aβ纤维的结构基础、构建超分子手性材料具有重要意义。   中国科学院化学研究所胶体、界面与化学热力学院重点实验室李峻

周其林院士就“手性分子合成”发表主旨演讲

周其林在作主旨演讲  揽镜自照,镜中人跟随我们的一颦一笑;双手相合,左右手彼此互为镜像。但看似相同的两个事物,却无论如何旋转都不会重叠。手性现象在自然界广泛存在,大到宇宙星云,小到日常的螺壳。在微观世界里,有一大类分子存在手性异构体,它们互为映像,但不能重叠,这类分子被称为手性分子。  大多数药物的