发布时间:2016-08-18 11:05 原文链接: SciSignal:首次揭示金黄色葡萄球菌耐受高盐浓度机制

  在一项新的研究中,来自英国帝国理工学院的研究人员发现一种新的方法来攻击金黄色葡萄球菌。他们揭示出这种细菌如何调节它的盐水平。相关研究结果发表在2016年8月16日那期Science Signaling期刊上,论文标题为“The second messenger c-di-AMP inhibits the osmolyte uptake system OpuC in Staphylococcus aureus”。

  金黄色葡萄球菌是食物中毒的一种常见的来源,能够抵抗用于食品制备和储存的高温和高盐浓度。研究人员希望利用这种知识开发出一种通过确保食物中的所有细胞被杀死从而阻断食物中毒的处理方法。他们也正在研究这些发现是否能够有助于为病人开发出除抗生素之外的一种疗法。

  在每4人当中,就有一人的皮肤上或鼻子中存在着金黄色葡萄球菌。然而,如果这些细菌侵入人体,它们能够导致严重性的疾病、血液中毒和甚至死亡。这种细菌的一种“超级细菌”形式,耐甲氧西林金黄色葡萄球菌(MRSA),已对抗生素甲氧西林产生耐药性。金黄色葡萄球菌也能够导致食物中毒,经常是通过污染的肉制品(如火腿)以及三明治、沙拉和乳制品导致的。

  在这项新的研究中,研究人员发现金黄色葡萄球菌如何调节它的盐摄入。破坏这种机制意味着这种细菌要么从它们的环境中摄入太多的盐,要么丢失太多的水分,无论是哪一种都会导致它们脱水和死亡。

  论文通信作者、帝国理工学院医学系科学家Angelika Gründling教授说,“金黄色葡萄球菌是一种重要的致病菌,在病人体内导致很多严重性感染。根据这项研究,我们如今更好地理解这种细菌如何应付盐胁迫。尽管这项研究仍然处于初期阶段,但是我们希望这种知识将有朝一日帮助我们阻止食源性葡萄球菌感染,以及为开发除抗生素之外的一种疗法提供新的可能。”

  在这项新的研究中,研究人员在实验室中研究了MRSA细胞,结果发现一种被称作环状di-AMP(c-di-AMP)的信号分子在这种细菌调节它们的盐水平中发挥着关键性作用。

  金黄色葡萄球菌非常耐受高盐浓度,尽管在此之前,科学家们并不知道其中的原因。在当前的这项研究中,研究人员揭示出当这种信号分子检测到这种细菌位于高盐环境中时,它附着到几种转运蛋白上,从而指示它们作出反应和保护这种细菌。

  高盐浓度会让细胞失去水分,这就是为何我们在吃咸食物后感到口渴。

  因此为了阻止水分丢失,这些转运蛋白将一种像微型海绵那样发挥作用的分子运输到细胞中。这种分子吸收水分,将它封锁在细胞中,阻止它逃逸。通过阻止水分丢失,这些微型海绵分子也阻止盐进入细胞中。

  研究人员能够破坏这种盐机制,并且发现通过增加信号分子c-di-AMP结合到这些转运蛋白上,这些微型海绵分子数量显著下降。抑制这种盐保护机制使得MRSA细胞对盐更加敏感,从而最终能够导致这些细菌细胞遭受破坏。

  来自其他研究小组的实验已揭示出一种类似的机制也存在李斯特菌中,其中李斯特菌也是食物中毒的一种常见来源。

  如今,研究人员正在研究这种机制,以便希望揭示这种信号分子调节这些转运蛋白的精确机制。他们也正在研究哪些其他类型的微型海绵分子参与这个过程。

相关文章

金纳米颗粒有望抑制金黄色葡萄球菌感染

中国科学院昆明动物研究所研究员赖仞团队研究获得了直径约3纳米的多肽修饰的金纳米颗粒(Au_CR),对金黄色葡萄球菌表现出特异的抑菌作用,主要通过作用于细菌的细胞膜杀死细菌。相关研究成果日前发表于《纳米......

人鼻中发现新型抗生素物质,可对抗病原体

德国图宾根大学研究人员从人类鼻子中发现了一种新的抗生素物质,可用来对抗病原体。这种名为epifadin的分子是由表皮葡萄球菌的特定菌株产生的。他们将epifadin归为一类前所未知的新型抗菌化合物,它......

内溶酶细菌对抗生素耐药问题的解决方案?

如果您曾经有过伤口感染,金黄色葡萄球菌是一种在这过程中出现的常见细菌。在大多数情况下,感染会自行消失,无需任何治疗。但是,如果感染严重,则可能需要使用抗生素来根除细菌。事实上,我们中的许多人不知不觉地......

金黄色葡萄球菌一氧化氮合成酶NOS调控万古霉素耐药性

金黄色葡萄球菌是人类重要机会性致病细菌,由甲氧西林耐药性金黄色葡萄球菌(MRSA)引发的感染正严重威胁公共健康安全。万古霉素被认为是临床上治疗严重MRSA感染的最后一道防线,其中度耐药性菌(VISA)......

Nature:抗生素联合使用并不都有利于清除金黄色葡萄球菌

在一项新的研究中,来自以色列理工学院的研究人员开发出一种新的技术来测量抗生素组合使用的长期影响。这些抗生素组合引起了科学界和医学界的极大兴趣,因为使用单一的抗生素往往导致细菌对这类药物的抗药性迅速产生......

数据未获得授权,中山大学梁影剑等人的文章被撤回

2021年6月10日,中山大学梁影剑(音译,LiangYingjian)等人在InfectionandDrugResistance在线发表题为“TrendinAntimicrobialResistan......

银基抗菌剂可以有效地对抗耐抗生素的金黄色葡萄球菌

一个研究小组发现,银基抗菌剂可以通过破坏关键蛋白质的功能来靶向多种生物途径,从而有效地对抗耐抗生素的金黄色葡萄球菌,并且可以进一步利用银基抗菌剂来提高传统抗生素的疗效,以及使耐甲氧西林的葡萄球菌重新敏......

Bap蛋白调控淀粉样纤维以及介导生物被膜形成的机制

近年来,由多重耐药性金黄色葡萄球菌引起的院内感染已对全人类的健康构成极大威胁。全球每年有近100万人死于无法用传统抗生素治疗的细菌感染,其中,耐甲氧西林金黄色葡萄球菌造成的死亡病例远超过由艾滋病和肺结......

表皮葡萄球菌如何变成致命病原体

表皮葡萄球菌是一种存在于人类皮肤和鼻腔中的无害微生物。然而,该物种的某些菌株会引起人工关节、心脏瓣膜和血液中的感染,而这些都是很难治疗的。这些细菌通常对常用的抗生素甲氧西林具有耐药性,是医院里最可怕的......

药物感染细菌,如何做出金黄色葡萄球菌抑菌环

前提条件是:药液的有效浓度达到“最低抑菌浓度”以上、且所含的细菌对药物敏感,如果所含细菌对药物不敏感,而不形成)——药物抑菌圈试验培养是:在培养基涂上金葡菌的菌种液(试验菌种),然后滴上含有抑制菌种的......