中国科学院上海微系统与信息技术研究所在锗基石墨烯应用研究中取得新进展。信息功能材料国家重点实验室SOI材料课题组在国际上首次采用单侧氟化石墨烯作为锗基MOSFET的栅介质/沟道界面钝化层,调制界面特性,有望解决未来微电子技术进入非硅CMOS时代,锗材料替代硅材料所面临的栅介质/沟道界面不稳定的难题。研究论文Fluorinated graphene in interface engineering of Ge-based nanoelectronics 以卷首插图(Frontispiece)形式于3月25日在Advanced Functional Materials上发表(25(12): 1805-1813, 2015; DOI: 10.1002/adfm.201404031)。
SOI材料课题组于2013年首次实现了锗基衬底CVD生长大尺寸连续单层石墨烯(Sci. Rep. 3(2013), 2465)。在此基础上对锗基石墨烯的应用开展深入研究,发现石墨烯与衬底之间具有良好的界面性质,当对石墨烯进行单侧氟化后所得到的氟化石墨烯不仅具有高的致密性与结构强度,而且可以从金属性半导体转变为二维绝缘材料。于是,创新性地将氟化石墨烯作为界面钝化层应用于锗基MOSFET器件中。研究表明,氟化石墨烯能够有效抑制界面互扩散行为,尤其是抑制氧原子向锗基衬底的扩散,避免不稳定氧化物以及界面缺陷所导致的电荷陷阱的形成。MOS器件性能得到很大提升,栅极漏电流能够降低4-5个数量级并能够将等效氧化层厚度降低至1nm以下。研究工作将为锗材料替代硅材料,推动微电子技术进入非硅CMOS时代,继续延续摩尔定律发展提供了解决方案。
该项目工作得到国家自然科学基金委创新研究群体、优秀青年基金、中国科学院高迁移率材料创新研究团队等相关研究计划的支持。
上海微系统所锗基石墨烯应用研究取得进展
中国科学院上海微系统与信息技术研究所研究员王浩敏团队联合上海师范大学副教授王慧山,首次在实验中直接证实了锯齿型石墨烯纳米带(zGNRs)的本征磁性,加深了对石墨烯磁性性质的理解,也为开发基于石墨烯的自......
富勒烯(C60)因独特的光电、催化和润滑性能而备受关注。但是,C60在强相互作用的金属表面难以形成有序的聚合物结构。因此,如何捕捉到C60聚合过程中的关键中间体并实现可控转化是材料合成领域的挑战。近日......
富勒烯(C60)因独特的光电、催化和润滑性能而备受关注。但是,C60在强相互作用的金属表面难以形成有序的聚合物结构。因此,如何捕捉到C60聚合过程中的关键中间体并实现可控转化是材料合成领域的挑战。近日......
近日,中国科学院兰州化学物理研究所的科研团队与瑞士巴塞尔大学、奥地利萨尔茨堡大学的学者携手,在富勒烯(C60)的研究上取得了重大进展,成功揭示了富勒烯如何转化为石墨烯(一种由单层碳原子组成的二维材料,......
智能膜与主动分离技术是膜研究的新兴领域,能够在外界刺激下实现分离性能的可逆调控。近日,清华大学深圳国际研究生院副教授苏阳、山东理工大学副教授赵金平、大连理工大学副教授张宁等合作发现,将氧化石墨烯和石墨......
荷兰代尔夫特理工大学科学家首次在无需外部磁场的条件下,观测到石墨烯中的量子自旋流。这一突破性发现为自旋电子学的发展提供了关键支持,标志着向实现量子计算和先进存储设备迈出了重要一步。相关成果发表于最新一......
在一项具有开创性意义的国际合作研究中,美国亚利桑那大学研究团队展示了一种利用持续时间不到万亿分之一秒的超快光脉冲来操纵石墨烯中电子的方法。通过量子隧穿效应,他们记录到了电子几乎瞬间绕过物理屏障的现象,......
中国科学院合肥物质科学研究院固体物理研究所王振洋团队根据“3D打印结构设计-激光界面工程-跨尺度性能调控”设计思路,开发出具有高各向异性导热比、高光热/电热转换效率兼具良好疏水性和机械性能的石墨烯/聚......
广东省科学院生态环境与土壤研究所流域水环境整治绿色技术与装备团队联合美国麻省大学教授邢宝山团队在石墨烯环境毒性机制研究领域取得重要进展。他们首次揭示腐殖酸吸附对石墨烯增强芽孢杆菌毒性的分子机制。近日,......
图1上半部分:真实原子中的(a)未杂化的轨道和(b)sp2轨道杂化示意图;下半部分:人造原子中的(c)圆形势场和(d)椭圆形势场示意图图2(a,b)数值计算的杂化态(θ形和倒θ形);(c,d)实验观测......