荷兰代尔夫特理工大学科学家首次在无需外部磁场的条件下,观测到石墨烯中的量子自旋流。这一突破性发现为自旋电子学的发展提供了关键支持,标志着向实现量子计算和先进存储设备迈出了重要一步。相关成果发表于最新一期《自然·通讯》。
这是科学家在实验中首次在石墨烯中演示了“量子自旋霍尔效应”。在这种效应下,电子会沿着石墨烯的边缘无损耗地流动,所有电子的自旋方向保持一致。自旋是电子的一种内禀量子特性,类似于一个微型磁针,可以指向“上”或“下”。利用电子自旋来传输和处理信息是自旋电子学的核心原理。这类器件有望成为下一代高速、低能耗电子设备、量子计算机以及先进存储系统的关键基础。
长期以来,在石墨烯中实现量子级别的自旋输运通常需要施加强外部磁场,这不仅限制了其在芯片上的集成应用,也阻碍了相关技术的实际推广。因此,此次无需外加磁场即可实现量子自旋流的研究成果,为未来自旋电子器件的实际应用扫清了一大障碍。
科学家通过将石墨烯与一种磁性二维材料CrPS4堆叠在一起,巧妙地绕过了对外部磁场的依赖。这种磁性层显著改变了石墨烯的电子结构,从而诱导出量子自旋霍尔效应。实验显示,石墨烯中的电子输运行为受到CrPS4的影响,呈现出明显的自旋方向依赖性。
更重要的是,这种由邻近磁性层调控的自旋电流具有“拓扑保护”特性。这意味着即使存在缺陷或无序干扰,自旋信号仍能在数十微米的距离内保持完整,不会在传输过程中丢失信息。这种高度稳定的自旋传输能力对于构建高性能、高可靠性的自旋电子电路至关重要。
这项研究不仅首次证实了无需磁场即可在石墨烯中实现受保护的量子自旋流,也为开发基于石墨烯的超薄自旋电子器件打开了新窗口。未来,这类稳定的自旋电子结构有望用于高效、相干地传输量子信息,并作为量子计算的基本单元,连接多个量子比特,推动新一代信息技术的发展。
中国科学院上海微系统与信息技术研究所研究员王浩敏团队联合上海师范大学副教授王慧山,首次在实验中直接证实了锯齿型石墨烯纳米带(zGNRs)的本征磁性,加深了对石墨烯磁性性质的理解,也为开发基于石墨烯的自......
富勒烯(C60)因独特的光电、催化和润滑性能而备受关注。但是,C60在强相互作用的金属表面难以形成有序的聚合物结构。因此,如何捕捉到C60聚合过程中的关键中间体并实现可控转化是材料合成领域的挑战。近日......
富勒烯(C60)因独特的光电、催化和润滑性能而备受关注。但是,C60在强相互作用的金属表面难以形成有序的聚合物结构。因此,如何捕捉到C60聚合过程中的关键中间体并实现可控转化是材料合成领域的挑战。近日......
近日,中国科学院兰州化学物理研究所的科研团队与瑞士巴塞尔大学、奥地利萨尔茨堡大学的学者携手,在富勒烯(C60)的研究上取得了重大进展,成功揭示了富勒烯如何转化为石墨烯(一种由单层碳原子组成的二维材料,......
智能膜与主动分离技术是膜研究的新兴领域,能够在外界刺激下实现分离性能的可逆调控。近日,清华大学深圳国际研究生院副教授苏阳、山东理工大学副教授赵金平、大连理工大学副教授张宁等合作发现,将氧化石墨烯和石墨......
荷兰代尔夫特理工大学科学家首次在无需外部磁场的条件下,观测到石墨烯中的量子自旋流。这一突破性发现为自旋电子学的发展提供了关键支持,标志着向实现量子计算和先进存储设备迈出了重要一步。相关成果发表于最新一......
荷兰代尔夫特理工大学科学家首次在无需外部磁场的条件下,观测到石墨烯中的量子自旋流。这一突破性发现为自旋电子学的发展提供了关键支持,标志着向实现量子计算和先进存储设备迈出了重要一步。相关成果发表于最新一......
在一项具有开创性意义的国际合作研究中,美国亚利桑那大学研究团队展示了一种利用持续时间不到万亿分之一秒的超快光脉冲来操纵石墨烯中电子的方法。通过量子隧穿效应,他们记录到了电子几乎瞬间绕过物理屏障的现象,......
中国科学院合肥物质科学研究院固体物理研究所王振洋团队根据“3D打印结构设计-激光界面工程-跨尺度性能调控”设计思路,开发出具有高各向异性导热比、高光热/电热转换效率兼具良好疏水性和机械性能的石墨烯/聚......
广东省科学院生态环境与土壤研究所流域水环境整治绿色技术与装备团队联合美国麻省大学教授邢宝山团队在石墨烯环境毒性机制研究领域取得重要进展。他们首次揭示腐殖酸吸附对石墨烯增强芽孢杆菌毒性的分子机制。近日,......