智能膜与主动分离技术是膜研究的新兴领域,能够在外界刺激下实现分离性能的可逆调控。近日,清华大学深圳国际研究生院副教授苏阳、山东理工大学副教授赵金平、大连理工大学副教授张宁等合作发现,将氧化石墨烯和石墨烯纳米片混合组装为复合膜,可使原本对溶剂刺激无响应的氧化石墨烯和石墨烯膜,转变为对溶剂种类有明确响应、分离性能可切换的智能膜材料。相关研究成果发表于《自然—通讯》。
研究表明,氧化石墨烯膜在水和甲醇中分离性能一致(截留分子量均为319克每摩尔);石墨烯膜则无明显的分离性能;而氧化石墨烯/石墨烯复合膜在水中的截留分子量与氧化石墨烯膜相同,但在甲醇中则升高至960克每摩尔,且该溶剂响应的分离行为可在水与甲醇之间快速、可逆地切换。
研究人员进一步将该复合膜应用于智能分级分离。通常情况下,含三种分子的溶液需至少两张膜材料才能实现分级分离,而在该研究中,单张氧化石墨烯/石墨烯复合膜仅通过切换溶剂即可调控分离性能,实现对三种分子高效分离。
研究团队通过研究水和有机溶剂在智能膜中的渗透通量与溶剂粘度之间的依赖关系,发现二者在膜中的传质通道不同,进而揭示了可切换的分子筛分行为并非源于传统认为的“孔径随溶剂变化”,而是由于传输路径的转变。他们发现,在水中,传质主要发生在氧化石墨烯-氧化石墨烯纳米通道;而在有机溶剂中,则切换为氧化石墨烯-石墨烯的异质传质通道。
通过理论计算表明,该异质通道因通道表面对有机溶剂的限域增强吸附,以及有机溶剂分子间的弱相互作用,导致通道结构溶胀,从而在有机溶剂中呈现截留分子量升高的独特分离特性。
该工作在研究相对成熟的氧化石墨烯膜体系中引入石墨烯,发现了溶剂可切换的新型智能分离行为。研究通过调控分子传输路径而非孔径变化,揭示了纳米异质通道内界面吸附和溶剂网络对限域传质与分离中的关键作用,为智能响应膜材料的设计提供了新思路。
相关论文信息:https://www.nature.com/articles/s41467-025-60680-x
富勒烯(C60)因独特的光电、催化和润滑性能而备受关注。但是,C60在强相互作用的金属表面难以形成有序的聚合物结构。因此,如何捕捉到C60聚合过程中的关键中间体并实现可控转化是材料合成领域的挑战。近日......
富勒烯(C60)因独特的光电、催化和润滑性能而备受关注。但是,C60在强相互作用的金属表面难以形成有序的聚合物结构。因此,如何捕捉到C60聚合过程中的关键中间体并实现可控转化是材料合成领域的挑战。近日......
近日,中国科学院兰州化学物理研究所的科研团队与瑞士巴塞尔大学、奥地利萨尔茨堡大学的学者携手,在富勒烯(C60)的研究上取得了重大进展,成功揭示了富勒烯如何转化为石墨烯(一种由单层碳原子组成的二维材料,......
智能膜与主动分离技术是膜研究的新兴领域,能够在外界刺激下实现分离性能的可逆调控。近日,清华大学深圳国际研究生院副教授苏阳、山东理工大学副教授赵金平、大连理工大学副教授张宁等合作发现,将氧化石墨烯和石墨......
智能膜与主动分离技术是膜研究的新兴领域,能够在外界刺激下实现分离性能的可逆调控。近日,清华大学深圳国际研究生院副教授苏阳、山东理工大学副教授赵金平、大连理工大学副教授张宁等合作发现,将氧化石墨烯和石墨......
荷兰代尔夫特理工大学科学家首次在无需外部磁场的条件下,观测到石墨烯中的量子自旋流。这一突破性发现为自旋电子学的发展提供了关键支持,标志着向实现量子计算和先进存储设备迈出了重要一步。相关成果发表于最新一......
在一项具有开创性意义的国际合作研究中,美国亚利桑那大学研究团队展示了一种利用持续时间不到万亿分之一秒的超快光脉冲来操纵石墨烯中电子的方法。通过量子隧穿效应,他们记录到了电子几乎瞬间绕过物理屏障的现象,......
中国科学院合肥物质科学研究院固体物理研究所王振洋团队根据“3D打印结构设计-激光界面工程-跨尺度性能调控”设计思路,开发出具有高各向异性导热比、高光热/电热转换效率兼具良好疏水性和机械性能的石墨烯/聚......
广东省科学院生态环境与土壤研究所流域水环境整治绿色技术与装备团队联合美国麻省大学教授邢宝山团队在石墨烯环境毒性机制研究领域取得重要进展。他们首次揭示腐殖酸吸附对石墨烯增强芽孢杆菌毒性的分子机制。近日,......
图1上半部分:真实原子中的(a)未杂化的轨道和(b)sp2轨道杂化示意图;下半部分:人造原子中的(c)圆形势场和(d)椭圆形势场示意图图2(a,b)数值计算的杂化态(θ形和倒θ形);(c,d)实验观测......