中国科学技术大学教授乔振华课题组与国内外同行合作,在二维体系拓扑量子态的理论研究方面取得系列进展。相关成果发表在《自然-纳米技术》、《物理评论快报》和《物理学进展报告》上。
量子反常霍尔效应(即零磁场条件下量子霍尔效应)自石墨烯和拓扑绝缘体发现以来受到了凝聚态物理和材料科学领域的广泛关注,并且最近几年实验上也取得了巨大突破。与如何制备出整数量子化的反常霍尔效应截然相反的一个问题是:在无序/杂质存在的情况下,量子反常霍尔效应如何被破坏并最终变为Anderson绝缘体?通过系统地利用电子输运特性研究、贝利曲率分析以及局域化长度计算,乔振华课题组与合作者发现了一种新型的量子反常霍尔效应在自旋反转杂质情况下的Anderson局域化的全新物理机制,即价带和导带对应的贝利曲率在杂质的作用下发生交换从而实现量子反常霍尔效应的局域化。该成果发表在7月29日的《物理评论快报》上[Phys. Rev. Lett. 117, 056802 (2016)]。
由于其独特的线性狄拉克色散关系,石墨烯成为研究各种拓扑量子态的理想载体。通过外部调控(原子吸附或者耦合衬底)诱导铁磁性或者自旋轨道耦合作用,石墨烯被预言可以实现二维Z2拓扑绝缘体和量子反常霍尔效应。但由于其诱导出的极弱自旋轨道耦合作用,这两类拓扑量子态尚未在实验上实现。除了电子自旋外,石墨烯还拥有谷KK’这一自由度。通过在单层石墨烯的AB两套子晶格中引入不同的在位能或者在双层石墨烯中外加一个垂直电场,可以打开体能隙实现量子谷霍尔效应。但是该拓扑态对体系边缘的构型非常敏感,因而在实验上很难实现。当外加的垂直电场随着空间发生变化,在电场强度为零的附近区域便会形成拓扑受限的一维零模导电态。虽然该拓扑态在2008年已在理论上提出,但是由于实验技术的原因一直没有突破。经过两年的努力,乔振华课题组和美国宾州州立大学教授祝钧课题组合作,在双层石墨烯上实现了该拓扑受限态。由于杂质的原因,虽然未能实现无耗散的整数量子化的电导,但是该电子态的平均自由程可以达到数百纳米。在外加磁场的作用下,杂质引起的谷间散射的影响被极大地削弱,从而使得电导可以接近整数量子化的极限。这一发现极大地促进了由全电操控的无耗散谷电子学器件的发展和应用。该成果发表在8月29日的《自然-纳米技术》上[Nat. Nanotech. 10, 1038 (2016)]。
多年来,乔振华及合作者在基于石墨烯的二维材料体系拓扑量子态(如量子反常霍尔效应、量子自旋霍尔效应、量子谷霍尔效应以及拓扑受限一维零模态等)方向进行了一系列的研究,5月13日受邀在物理综述期刊《物理学进展报告》发表文章[Rep. Prog. Phys. 79, 066501 (2016)],系统综述了近年来在各种二维材料拓扑态的理论和实验方面的全面研究进展。该工作的第一作者为物理系2014级博士生任亚飞。
上述系列研究得到了基金委、中科院、科技部和教育部的资助。中国科大超级计算中心对这些工作的顺利完成也给予了至关重要的支持。
化学家们使一个热门二维材料——MXenes家族成员数量翻了一番,甚至创纪录地将9种金属嵌进单一材料中。这为设计大量奇怪但有用的物质打开了大门。相关研究近日发表于《科学》。MXenes家族此前就备受关注......
中国科学院上海微系统与信息技术研究所研究员王浩敏团队联合上海师范大学副教授王慧山,首次在实验中直接证实了锯齿型石墨烯纳米带(zGNRs)的本征磁性,加深了对石墨烯磁性性质的理解,也为开发基于石墨烯的自......
富勒烯(C60)因独特的光电、催化和润滑性能而备受关注。但是,C60在强相互作用的金属表面难以形成有序的聚合物结构。因此,如何捕捉到C60聚合过程中的关键中间体并实现可控转化是材料合成领域的挑战。近日......
富勒烯(C60)因独特的光电、催化和润滑性能而备受关注。但是,C60在强相互作用的金属表面难以形成有序的聚合物结构。因此,如何捕捉到C60聚合过程中的关键中间体并实现可控转化是材料合成领域的挑战。近日......
近日,中国科学院兰州化学物理研究所的科研团队与瑞士巴塞尔大学、奥地利萨尔茨堡大学的学者携手,在富勒烯(C60)的研究上取得了重大进展,成功揭示了富勒烯如何转化为石墨烯(一种由单层碳原子组成的二维材料,......
智能膜与主动分离技术是膜研究的新兴领域,能够在外界刺激下实现分离性能的可逆调控。近日,清华大学深圳国际研究生院副教授苏阳、山东理工大学副教授赵金平、大连理工大学副教授张宁等合作发现,将氧化石墨烯和石墨......
荷兰代尔夫特理工大学科学家首次在无需外部磁场的条件下,观测到石墨烯中的量子自旋流。这一突破性发现为自旋电子学的发展提供了关键支持,标志着向实现量子计算和先进存储设备迈出了重要一步。相关成果发表于最新一......
硅在支撑智能手机、电脑、电动汽车等产品的半导体技术中一直占据着王者地位,但美国宾夕法尼亚州立大学领导的一个研究团队发现,“硅王”的统治地位可能正在受到挑战。该团队在最新一期《自然》杂志上发表了一项突破......
在一项具有开创性意义的国际合作研究中,美国亚利桑那大学研究团队展示了一种利用持续时间不到万亿分之一秒的超快光脉冲来操纵石墨烯中电子的方法。通过量子隧穿效应,他们记录到了电子几乎瞬间绕过物理屏障的现象,......
中国科学院合肥物质科学研究院固体物理研究所王振洋团队根据“3D打印结构设计-激光界面工程-跨尺度性能调控”设计思路,开发出具有高各向异性导热比、高光热/电热转换效率兼具良好疏水性和机械性能的石墨烯/聚......