近日,中科院技术生物所研究员黄青课题组通过设置不同气体条件,利用低温等离子体技术,对广谱类代表性抗生素诺氟沙星进行处理,发现低温等离子放电产生的活性因子对降解水体中的抗生素有重要作用,相关成果被环境科学类期刊《光化层》在线发表。
黄青课题组发现,气体成分对等离子体降解抗生素效果有重要影响,且不同气体条件下等离子体处理降解抗生素的活性物质也存在差别。为了开发实用性技术,黄青课题组特别选用氧气、空气和氮气进行实验,发现在氧气和空气条件下,等离子体放电对抗生素降解有显著效果;而在氮气等离子体放电条件下,只有添加过氧化氢,才可大幅增强降解效果。
课题组通过研究证明,在氧气或空气等离子体放电处理中,放电产生的活性氧是抗生素降解的主要因素,其中羟基自由基起主要作用,所涉及化学反应主要是破坏诺氟沙星的哌嗪环和发生脱氟羟基化等作用;而在氮气放电条件下,若添加过氧化氢,则活性氮是降解抗生素的主要因素。
另外,课题组研究人员还证实等离子体放电产生的臭氧和紫外光也可起作用。该研究为利用低温等离子体技术处理水体中抗生素提供了理论支持,也为技术应用提供了依据和方向。
低温等离子技术可去除环境中各种污染物,具有经济实用、简便易行、无二次污染等优点,利用该技术进行污水处理是当前研究热点之一。黄青课题组围绕利用低温等离子技术解决水污染问题进行了长期基础研究,先后围绕蓝藻细胞、藻毒素、多氯酚类、染料、六价铬等污染物开展低温等离子体处理效率及机理研究,有助于该技术在环境领域的应用和推广。
每毫升1微克就能杀死耐药菌通过研究土壤细菌——天蓝色链霉菌合成抗生素次甲霉素A 的过程,研究人员发现了一种中间化合物——premethylenomycinClactone,其抗菌活性是最终产......
在人工智能(AI)的辅助下,麻省理工学院研究人员成功设计出新型抗生素,可快速、精准杀灭耐药淋病奈瑟菌和耐甲氧西林金黄色葡萄球菌(MRSA)等耐药菌。研究团队运用生成式人工智能算法设计了超过3600万种......
根据本周发表的两份报告,古菌是生命之树上最不为人所知的微生物分支,是研究新型抗生素的重要线索。古菌以其在极端环境(如热泉和盐碱地)中茁壮成长的能力而闻名,它们也与细菌共存于于多种环境中。现在,两组研究......
近日,广东省科学院生态环境与土壤研究所研究员孙蔚旻团队在国家重点研发计划、国家自然科学基金等项目的资助下,在畜禽废水中微塑料与抗生素共污染微生物降解机制研究方面取得新进展,揭示了微塑料-抗生素复合污染......
法国国家科学研究中心日前宣布,该机构参与的科研团队成功识别出一种新分子NM102,能够在不破坏宿主微生物群的前提下,使致病菌在面对免疫系统时“解除武装”。这一成果有望推动新型药物开发,并解决抗生素耐药......
一项新研究警告称,全世界数百万公里的河流携带的抗生素污染水平足以促进耐药性并危害水生生物。该研究首次估算了人类使用抗生素造成的全球河流污染规模——每年约有8500吨抗生素进入世界各地的河流系统,这个数......
加拿大和美国研究人员报告说,他们发现了一种靶向细菌核糖体的新型广谱套索肽抗生素,对多种致病细菌表现出杀伤力,其中包括对现有药物具有耐药性的菌株,为应对抗生素耐药性问题提供了新路径。相关论文近日发表在英......
多重耐药致病真菌的全球传播对人类健康构成了严重威胁,因此有必要发现具有独特作用模式的抗真菌药物。然而,由于已知化合物的高频率重新发现和缺乏新的抗真菌药物靶点,传统的基于活性的筛选先前未描述的抗生素受到......
联合国粮农组织(FAO)分析认为,到2040年,全球牲畜抗生素使用可能比2019年增长近30%。这项发现凸显出在畜牧业领域开展全球协调行动的必要性,以减少抗生素的使用。相关研究4月1日发表于《自然—通......
日前,2024年湖北省科技奖结果揭晓,武汉轻工大学副校长、教授侯永清主持的“猪禽肠道健康营养调控关键技术及应用”项目获湖北省科技进步一等奖。侯永清教授。武汉轻工大学供图28年潜心饲料替抗研究肠道是营养......