石墨烯是sp2碳原子紧密堆积形成的六边形蜂窝状结构的二维原子晶体,是构建其它sp2杂化碳的同素异形体的基本组成部分,可以堆垛形成三维的石墨,卷曲形成一维的碳纳米管,也可以包裹形成零维的富勒烯。
直到 2004 年,英国曼彻斯特大学的Geim和Novoselov等使用胶带剥离技术,才首次成功地制备出了单层石墨烯,这一发现也推翻了科学家关于理想的二维晶体材料由于热力学不稳定性而不能在室温下存在的预言。
作为一种理想的二维原子晶体,石墨烯具有超高的电导率和热导率、巨大的理论比表面积、极高的杨氏模量和抗拉强度,可望在微纳电子器件、光电检测与转换材料、结构和功能增强复合材料及储能等广阔的领域得到应用。
Raman光谱表征石墨烯的完美优势
拉曼光谱在石墨烯的层数表征方面具有独特的优势,完美的单洛伦兹峰型的二阶拉曼峰(G'峰)是判定单层石墨烯简单而有效的方法,而多层石墨烯由于电子能带结构发生裂分使其G'峰可以拟合为多个洛伦兹峰的叠加,G'峰与石墨烯的电子能带结构密切相关,因此石墨烯的电子结构可以用共振拉曼散射来测定。
石墨烯电场效应下的拉曼光谱研究表明电子/空穴掺杂会影响石墨烯的电子-声子耦合,从而引起拉曼位移,因此,拉曼光谱是测定石墨烯的掺杂类型和掺杂浓度的有效手段。
如何判断石墨烯的质量?
如何判断石墨烯的质量是一个关键的问题,D峰为涉及一个缺陷散射的双共振拉曼过程,因此石墨烯的缺陷会反映在其拉曼D峰上,通过对石墨烯拉曼D峰的检测可以定量地对其缺陷密度进行研究。
由于石墨烯的带隙为零,通过化学修饰在sp2碳上引入sp3碳缺陷是人们打开石墨烯带隙的重要方法之一,因而D峰也是衡量其化学修饰程度的一个重要的指标。另外,石墨烯的层间堆垛方式、所处的环境温度、应力作用以及基底效应也会反映在其拉曼光谱特征峰的变化上。
Raman峰形能反映更多信息
对于sp2碳材料,除了其典型的拉曼D峰、G峰和G'峰,还有一些其他的二阶拉曼散射峰。大量的研究表明石墨烯含有一些二阶的和频与倍频拉曼峰,这些拉曼信号由于其强度较弱而容易被忽略。在1650~2300cm-1频率范围内,这些和频与倍频拉曼特征峰的峰位、峰型和强度对其层数和层间堆垛方式均具有很强的依赖性。
通过对这些弱信号的拉曼光谱进行分析,可以很好地对石墨烯中的电子-电子、电子-声子相互作用及其拉曼散射过程进行系统的研究。
G 峰产生于sp2碳原子的面内振动,是与布里渊区中心双重简并的iTO和iLO光学声子相互作用产生的,具有E2g对称性,是单层石墨烯中唯一的一个一阶拉曼散射过程。
G'峰和D峰均为二阶双共振拉曼散射过程。G'峰是与K点附近的iTO光学声子发生两次谷间非弹性散射产生的,而D峰则涉及到一个iTO声子与一个缺陷的谷间散射。G'峰拉曼位移约为D峰的两倍,因此通常表示为2D峰,但是G'峰的产生与缺陷无关,并非D峰的倍频信号。
D峰和G'峰均具有一定的能量色散性,其拉曼峰位均随着入射激光能量的增加向高波数线性位移,在一定的激光能量范围内,其色散斜率大约为50和100 cm-1/eV,这也是双共振过程的特征。G'峰和D峰均为谷间散射过程,而D'峰则为谷内双共振过程,两次散射过程分别为与缺陷的谷内散射和与K点附近的iLO声子的非弹性谷内散射过程。
由于在K点附近石墨烯的价带和导带相对于费米能级成镜像对称,电子不仅可以与声子发生散射作用,而且可以与空穴发生散射作用,因此还会有三阶共振拉曼散射过程的产生。
中国科学院上海微系统与信息技术研究所研究员王浩敏团队联合上海师范大学副教授王慧山,首次在实验中直接证实了锯齿型石墨烯纳米带(zGNRs)的本征磁性,加深了对石墨烯磁性性质的理解,也为开发基于石墨烯的自......
富勒烯(C60)因独特的光电、催化和润滑性能而备受关注。但是,C60在强相互作用的金属表面难以形成有序的聚合物结构。因此,如何捕捉到C60聚合过程中的关键中间体并实现可控转化是材料合成领域的挑战。近日......
富勒烯(C60)因独特的光电、催化和润滑性能而备受关注。但是,C60在强相互作用的金属表面难以形成有序的聚合物结构。因此,如何捕捉到C60聚合过程中的关键中间体并实现可控转化是材料合成领域的挑战。近日......
近日,中国科学院兰州化学物理研究所的科研团队与瑞士巴塞尔大学、奥地利萨尔茨堡大学的学者携手,在富勒烯(C60)的研究上取得了重大进展,成功揭示了富勒烯如何转化为石墨烯(一种由单层碳原子组成的二维材料,......
智能膜与主动分离技术是膜研究的新兴领域,能够在外界刺激下实现分离性能的可逆调控。近日,清华大学深圳国际研究生院副教授苏阳、山东理工大学副教授赵金平、大连理工大学副教授张宁等合作发现,将氧化石墨烯和石墨......
荷兰代尔夫特理工大学科学家首次在无需外部磁场的条件下,观测到石墨烯中的量子自旋流。这一突破性发现为自旋电子学的发展提供了关键支持,标志着向实现量子计算和先进存储设备迈出了重要一步。相关成果发表于最新一......
在一项具有开创性意义的国际合作研究中,美国亚利桑那大学研究团队展示了一种利用持续时间不到万亿分之一秒的超快光脉冲来操纵石墨烯中电子的方法。通过量子隧穿效应,他们记录到了电子几乎瞬间绕过物理屏障的现象,......
中国科学院合肥物质科学研究院固体物理研究所王振洋团队根据“3D打印结构设计-激光界面工程-跨尺度性能调控”设计思路,开发出具有高各向异性导热比、高光热/电热转换效率兼具良好疏水性和机械性能的石墨烯/聚......
广东省科学院生态环境与土壤研究所流域水环境整治绿色技术与装备团队联合美国麻省大学教授邢宝山团队在石墨烯环境毒性机制研究领域取得重要进展。他们首次揭示腐殖酸吸附对石墨烯增强芽孢杆菌毒性的分子机制。近日,......
图1上半部分:真实原子中的(a)未杂化的轨道和(b)sp2轨道杂化示意图;下半部分:人造原子中的(c)圆形势场和(d)椭圆形势场示意图图2(a,b)数值计算的杂化态(θ形和倒θ形);(c,d)实验观测......