细胞是生物学的基本单位,研究人员正更加努力地尝试将它们进行单个分离、研究和比较。单细胞测序是指DNA研究中涉及测序单细胞微生物相对简单的基因组,更大更复杂的人类细胞基因组。根据加州大学旧金山分校(UCSF)对人死后脑组织的研究,发现特定脑细胞中基因活性的变化与自闭症患儿的严重程度有关。作者认为,通过了解细胞基因表达的具体变化对疾病的症状的贡献,改变大脑回路的功能,为治疗提供了重要基础。

  近年来,科学家们已经了解到自闭症谱系障碍(ASDs)通常是由发育中的大脑自我连接的遗传指令变化引起的,始于怀孕中期,一直持续到幼儿时期。对自闭症患者来说,这些错乱的指令所产生的成熟大脑回路是如何不同的,或者这些变化是如何导致社交沟通困难、受限的重复性行为以及定义这种紊乱的其他症状,目前还不太清楚。新研究的作者说,这是目前没有药物能逆转或治疗这些症状的原因之一。

  “确定在怀孕或子宫内发生的基因变化对了解自闭症的原因很重要,但这些见解不太可能产生有用的治疗目标,”通讯作者,UCSF Weill神经科学研究所成员,神经学教授Arnold Kriegstein博士说。”当孩子们被诊断为自闭症时,所有出错的事情都已经发生了,患者的功能紊乱回路已经成熟了。如果我们想在这些孩子引起我们注意前为他们提供治疗,我们必须首先解决大脑回路的改变。”

  在这项发表在2019年5月17日《Science》杂志上的新研究中,Kriegstein实验室的博士后学者Dmitry Velmeshev博士带领的研究人员通过使用新技术来寻找基因活性的差异,从而了解自闭症患者的大脑在神经回路水平上与非自闭症患者的特定类型脑细胞有何不同。

  通过对RNA分子进行测序来研究基因表达中的单细胞差异——揭示哪些基因在特定细胞中被激活——近年来一直是生物学的前沿,但在成人大脑组织中却很难应用,因为从精心缠绕的大脑回路中挑出单个细胞有点像玩果冻版的Jenga(一种益智游戏,玩家轮流从高塔里抽走木块)。

  Velmeshev和他的同事们用新版本技术从从脑组织样本中分离的细胞核中提取RNA,然后根据基因表达的模式特征识别出遗传物质来源的细胞类型。这使得研究人员成功地在自闭症患者的大脑中寻找特定细胞类型和回路组分的生物学差异。

  研究人员应用这个单核测序方法(single-nuclei sequencing),快速捕捉并筛选NIH神经生物库(NeuroBioBank)和马里兰大学医学院(Brain and Tissue Bank)提供的冰冻的尸检样本的前额皮质和前扣带回皮质(在先前的研究中,自闭症患者的这两个大脑区域表现出不同的行为)他们比较了15名死于4到22岁之间的自闭症患者的大脑样本和16名死于同一年龄段非神经原因的患者的大脑样本。由于许多自闭症患者也患有癫痫,研究人员还检查了癫痫患者的大脑样本,以区分更可能由癫痫引起的大脑变化,而不是自闭症本身。

  基于这些大脑样本中超过100,000个细胞核的分析发现,自闭症患者的大脑中包含了一组共同的基因变化,这些基因与神经元之间的突触通讯有关。这些变化是在负责局部信息处理的新皮质(neocortex)最上层的细胞中发现的。他们还发现了非神经元脑细胞(胶质细胞,glia)的变化,这种变化可能会影响它们在修剪和维持健康神经回路中的作用。

  研究人员发现,在自闭症患者的大脑中,许多差异表达的基因在整个大脑中广泛表达,但只有在特定细胞类型中,这些基因对疾病才表现出明显的变化影响。值得注意的是,这些特定细胞群中基因表达的变化程度与患者行为症状的严重程度密切相关。

  长期以来,研究人员一直担心,一种症状和遗传原因如此多样的疾病,如自闭症,在神经系统层面上是如此多变,以至于每个人必须需要一种独特的治疗方式。事实上,研究人员在不同年龄和遗传背景的不同患者中识别出一组常见的回路变化,这给人们带来了一个新的希望,即有朝一日将会有一种对许多患有这种疾病的人的共同治疗策略。

  “看到所有这些患者的特定细胞类型的明显汇聚非常令人兴奋,”Velmeshev说。“这就为将来某一时刻的到来提供了一丝希望,一种治疗方法适用于许许多多不同的疾病患者。”

  另一方面,Velmeshev和Kriegstein指出,这些常见的基因变化对大脑中的某些细胞类型具有高度特异性,这一发现提出了一个重大挑战,因为任何治疗都必须精确地靶向这些受影响的细胞类型。

  为了更好地理解他们在本研究中发现的特定细胞变化如何影响自闭症患者神经回路的功能,研究人员计划在3D“类器官(organoid)”大脑发育模型中重建这些变化,这些模型可以在实验室中由患者的皮肤细胞中长出来。

  Velmeshev时候:“重要的是记住,我们正在研究早期大脑发育过程中发生变化的下游效应,因此我们看到的变化可能是自闭症症状的实际原因以及这些神经元试图补偿以维持正常活动的方式的混合。准确地找出这些变化中的哪一个是治疗的最佳潜在目标,这是新数据为未来研究开放的众多问题之一。”

  论文的其他作者包括加州大学旧金山分校的Lucas Schirmer、Diane Jung、Yonatan Perez、Simone Mayer和Aparna Bhaduri;加州大学旧金山分校和加州大学伯克利分校的Nitasha Goyal;加州大学旧金山分校和威康基金会-MRC剑桥干细胞研究所的David H.Rowitch;加州大学圣克鲁斯分校的Maximilian Haeusler。

相关文章

猿类基因组测序为人类进化研究提供“里程碑”视角

经过20多年的努力,科研人员成功地对6种现存猿类的基因组进行了完整测序,为研究人类进化提供了近距离视角,这被英国《自然》杂志称为“遗传学的一个里程碑”。123名来自多个国家和地区的科研人员组成的团队9......

EVIDENT焕新亮相细胞年会,以奥伟登之名加速本土化战略

人工智能正以前所未有的速度重塑细胞生物学研究。从高分辨率成像到细胞行为动态分析,AI技术不仅提升了数据处理的精度与效率,同时随着AI与生物学、医学等学科的深度融合,其在细胞研究中的应用正不断突破边界,......

预算887.8万昆明医科大学第二附属医院2025年05月(至)2025年06月政府采购意向

昆明医科大学第二附属医院2025年05月(至)2025年06月政府采购意向为便于供应商及时了解政府采购信息,根据《财政部关于开展政府采购意向公开工作的通知》(财库〔2020〕10号)等有关规定,现将昆......

最高500万上海2025年度关键技术研发计划“细胞与基因治疗”项目开始申报

上海市科学技术委员会关于发布2025年度关键技术研发计划“细胞与基因治疗”项目申报指南的通知沪科指南〔2025〕5号各有关单位:为深入实施创新驱动发展战略,加快建设具有全球影响力的科技创新中心,根据《......

西湖大学连发两篇Nature破解复杂疾病细胞地图与线粒体转运之谜

描述疾病相关细胞的空间分布对于理解疾病病理学至关重要。近日,西湖大学杨剑团队在Nature在线发表题为“Spatiallyresolvedmappingofcellsassociatedwithhum......

实时意念说话设备让瘫痪者重新“开口”

《自然-神经科学》3月31日发表的一项研究报道了一个能将大脑言语活动实时转换成有声词汇的新设备。该技术可以帮助失语者重拾实时流畅交流的能力。当前涉及言语的脑机接口一般会在个人无声地尝试说话与计算机有声......

生命科学领域再添国之重器:人类细胞谱系大科学研究设施启动建设

湾区再添"国之重器"3月25日,总投资逾30亿元的人类细胞谱系大科学研究设施在广州国际生物岛正式破土动工。作为国家"十四五"规划布局的重大科技基础设施,该项目将......

大脑的衰老速度受这64个基因的影响

一项3月12日发表于《科学进展》的研究显示,科学家发现了64个影响人类大脑衰老速度的基因,还确定了抗衰老药物和实验性化合物,这些药物和化合物可以针对这些基因逆转衰老。这是迄今为止针对大脑衰老的遗传因素......

因美纳被制裁背后:一家测序巨头的中国困局

事件焦点:为什么是它?3月4日,中国将美国基因测序公司因美纳(Illumina)列入“不可靠实体清单”,引发行业震动。这家生产基因测序仪的公司看似低调,却是全球生物实验室的“水电煤”——它的设备几乎垄......

一种蛋白能调节细胞年轻与衰老态

日本大阪大学团队发现,接头蛋白复合物2α1亚基(AP2A1)能让细胞在年轻和衰老这两种状态之间切换,这意味着在逆转细胞衰老研究方面迈出了关键一步。相关论文发表于近期《细胞信号》杂志。随着年龄增长,衰老......