时间序列预测是大规模数据无损压缩和极端天气预报等领域的核心技术。随着应用场景多样化和数据复杂性提升,现有模型在异构数据的统一表达、长序列结构依赖建模、极端天气波动捕捉等方面存在挑战。中国科学院计算机网络信息中心人工智能团队围绕上述挑战开展研究,提出一系列创新算法与模型,并在实际系统部署应用。
针对光伏场景中天气扰动强、云层变化快的挑战,该团队构建了超短期多云层光伏功率预测框架MCloudNet,利用高、中、低云图结构对光流轨迹预测,增强对功率高频变化的感知与响应能力。模型已在河北和云南等多个光伏电站部署运行,提升了预测精度与微电网调度稳定性。
针对传统压缩方法难以高效建模原始字节流中潜在结构的挑战,该团队提出了SEP时间序列压缩框架,专注于通用字节流的无损预测与压缩建模任务。研究通过语义增强的patch表示与自适应跳步机制,提升对二进制数据中潜在结构的建模能力,实现跨流显存共享与多任务并发。实验表明,SEP在多模态压缩任务中压缩率最高提升12.8%,速度提升32.5%,具备在科学数据归档等场景中的广泛适应性。
近日,上述两篇论文被第三十四届国际人工智能联合会议IJCAI 2025(CCF A类会议)录用。研究工作得到国家重点研发计划的支持。
旗叶夹角是决定小麦群体大小、群体光能拦截效率以及通风透光性能的关键农艺性状,是小麦株型的重要构成因素之一。旗叶夹角因长期依赖人工测量,导致效率低、精度差、主观性强,难以满足大规模精准育种和栽培管理的需......
傅里叶叠层成像是一种新兴的计算成像技术,其成像的正向模型包括光瞳函数的低通滤波、光瞳在频域内的扫描采样、傅里叶变换和复杂的成像噪声污染。传统基于深度神经网络学习(如卷积神经网络)方法在远距离场景下,环......
时间序列预测是大规模数据无损压缩和极端天气预报等领域的核心技术。随着应用场景多样化和数据复杂性提升,现有模型在异构数据的统一表达、长序列结构依赖建模、极端天气波动捕捉等方面存在挑战。中国科学院计算机网......
时间序列预测是大规模数据无损压缩和极端天气预报等领域的核心技术。随着应用场景多样化和数据复杂性提升,现有模型在异构数据的统一表达、长序列结构依赖建模、极端天气波动捕捉等方面存在挑战。中国科学院计算机网......
近日,浙江大学医学院附属第二医院童璐莎、高峰教授团队,联合浙江大学生物仪器与工程学院赵立教授团队,成功开发出一种用于区别急性自发性脑出血的可解释性的人工智能模型,该模型针对急性脑叶出血发病凶险,病因鉴......
最近,印度理工学院(位于德里)化学工程系进行了一项研究,使用液相色谱-质谱联用技术(LC–MS)来区分单克隆抗体(mAb)中的异变体(糖型),能够对其进行表征,揭示了在完整水平上可辨识的峰。尽管商业软......
近日,中国科学院水生生物研究所毕永红团队联合德国卡尔斯鲁厄工学院,研发出基于大数据挖掘和深度学习的有害藻类水华预警系统。相关研究成果作为封面文章,发表在《环境科学与技术》(EnvironmentalS......
近日,华东理工大学机械与动力工程学院、先进电池系统与安全重点实验室教授栾伟玲课题组与国家级高层次人才、华东理工大学讲席教授陈浩峰合作,在全球交通科学与技术领域期刊《交通电动化》发表论文,首次提出用于锂......
“过去一段时间,以大语言模型为代表的人工智能技术取得了令人震撼的成绩,而这些已经让我们看到了通用人工智能的曙光。”近日,在由深度学习技术及应用国家工程研究中心主办的WAVESUMMIT深度学习开发者大......
冷冻软X射线断层扫描(Cryo-SXT)是研究细胞超微结构的强大方法,可提供数十纳米范围的分辨率和膜结构的强烈对比度,无需标记或化学固定。较短的采集时间和相对较大的视场导致快速采集大量断层图像数据。将......