摘要: 阐明染色质复杂结构的技术有染色质构象捕获(chromatin conformation capture, 3C)及更高通量的衍生技术4C、5C,这些提供了长距离的染色质相互作用,但不能扩展到整个染色质相互反应组。在2009年末,两种新方法的迸发,有望绘出全基因组范围的相互作用图谱。
如果将人的所有染色体相连并充分伸展的话,其长度可达2米左右,如此庞大的DNA链要全部储存在直径约10微米的细胞核中。此外,基因及其调控元件需要交流,染色质必须打开,允许转录和复制。因此,人们常常提出这样的疑问:“基因的线性顺序与空间排布如何关联?”“基因如何被遥远的元件所调控?”。
阐明染色质复杂结构的技术有染色质构象捕获(chromatin conformation capture, 3C)及更高通量的衍生技术4C、5C,这些提供了长距离的染色质相互作用,但不能扩展到整个染色质相互反应组。在2009年末,两种新方法的迸发,有望绘出全基因组范围的相互作用图谱。
马萨诸塞大学的Job Dekker和Broad研究院的Eric Lander开发出了Hi-C技术,能捕获全基因组范围的相互作用1。Hi-C是一种3C衍生技术,基于交联DNA与生物素linker的邻近连接,能够拉下(pull down)片段,接着进行高通量测序。从800万个读取对中,研究人员产生了基因组范围的接触模型,分辨率在1 MB。
Dekker认为Hi-C的难度不在染色质捕获本身,而在于数据的阐释。“数据中存在明显的聚合物特征,它们确定了背景。”他推测,如果想以1 KB的分辨率查看染色体的三维结构,还需要数亿个读取。
研究人员还发现了出人意料的结果:染色质并非类似于紧凑、多节的结构,而是一种无节的紧密压缩构象,有活性和无活性的染色质结构域折叠成两个空间各异的区室。
一个月后,新加坡基因组研究院的Yijun Ruan和Edwin Cheung在《nature》上发表了另一项重要技术CHIA-PET 2。它是对读双标签(PET)测序与染色质免疫沉淀(ChIP)的结合,在碱基对的分辨率解析了蛋白介导的功能相互作用。
研究人员用II型限制性内切酶将免疫沉淀的DNA片段与条形码linker连接,产生了PET,然后对染色质相互作用(ChIA)的PET进行高通量测序,生成了转录因子依赖的相互作用图谱。
对于Ruan而言,数据阐释中的最大问题在于如何处理噪音。“噪音来自两个水平,生物和技术。”生物噪音是由染色质的动态性质引起的,因为它一直在移动,在任一指定时间点许多相互作用都是无意义的。Ruan的理论是有意义的相互作用更强,因此能承受更剧烈的片段化方法。技术上的噪音则来自邻近连接步骤。为了控制这种嵌合体的形成,研究小组将染色质材料均分成两等份,随后加入带有不同条形码的linker,在连接之前再次混匀。嵌合体将在同一个PET上带有不同的linker,随后被排除。
Hi-C和ChIA-PET从两个不同的方向靠近染色质相互作用组,一个提供了染色质如何在核中折叠的鸟瞰,另一个观察了特定蛋白对基因组结构的影响。为了增加它们的影响力,提供更为精细的染色质相互作用组图谱,两种方法都将向中心靠拢。更高的测序能力以及新的分析方法将增加Hi-C的分辨率,最终达到1 KB的分辨率。ChIA-PET在更多蛋白如聚合酶上的应用,将鉴定出参与转录等过程的所有染色质相互作用。
叠加Hi-C图谱和ChIA-PET图谱,以及现有的注释,将有助于了解三维空间的基因调控。
参考文献:
1. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289−293 (2009).
2. Fullwood, M.J. et al. An oestrogen-receptor-α-bound human chromatin interactome. Nature 462, 58−64 (2009).
• 在美国人类遗传学会(ASHG)年会上,因美纳5碱基解决方案的早期试用客户——伦敦健康科学中心研究所将展示该技术在加速罕见病病例解析方面的强大潜力。• 因美纳专有的5碱基化学技术......
人类基因组中存在大量具有"跳跃"能力的逆转座子(retrotransposon)序列。在胚胎发育早期、免疫和神经系统等特定阶段和环境下,它们会被激活,发挥重要生理功能;在病毒感染、......
橡胶树是天然橡胶的主要来源。“橡胶树育种面临的主要困难在于周期长和效率低,通过常规育种方法将多抗、高产性状聚合往往需要30~40年。”中国热带农业科学院橡胶研究所研究员程汉告诉《中国科学报》。然而,目......
记者宋喜群、冯帆从山东农业大学获悉,该校农学院教授孔令让研究团队首次组装了小麦远缘杂交常用物种中间偃麦草和鹅观草染色体水平的高质量基因组序列,解析了二者基因组结构差异与独立多倍化演化路径,对两者携带的......
近日,中国农业科学院烟草研究所烟草功能基因组创新团队发现烟草分枝发育“开关基因”,预示着未来作物株型调控有了新靶点。相关研究成果发表在《植物生物技术》(PlantBiotechnologyJourna......
薇甘菊作为全球十大最具危害的恶性入侵杂草之一,以其惊人的繁殖速度和强大的环境适应性,在亚洲、太平洋地区及中国华南地区造成严重生态破坏。然而,其基因组层面的适应性进化机制长期未被系统解析,制约了科学防控......
近日,中国科学院大连化学物理研究所研究员周雍进团队与上海交通大学副教授鲁洪中合作,在酵母系统生物学研究中取得新进展。研究团队通过整合分析全球1807株酿酒酵母菌株的基因组与生态位数据,构建了高覆盖度的......
近日,中国农业科学院农业基因组研究所农业基因编辑技术创新团队深入解析了中亚野猪种群在跨越欧亚大陆百万年的迁徙历程中适应环境的独特遗传密码,为理解大型哺乳动物如何应对环境变化提供了全新视角。相关研究成果......
人类基因组中超98%的遗传变异位于非编码区,这些变异通过调控染色质可及性、三维构象、剪接加工等多种分子机制影响基因表达,最终导致疾病发生。由于调控机制的复杂性和细胞类型特异性,目前解读非编码变异的分子......
近日,中国科学院生物物理研究所徐涛研究组和何顺民研究组在《基因组、蛋白质组与生物信息学报》杂志发表论文。两位科学家牵头的“女娲”中国人群基因组计划旨在构建中国人群的全基因组数据资源,支撑中国人群的疾病......