智能软驱动材料是指在一定的外部刺激下能够将各种能量(光能、热能、化学能及气体的梯度势能)转换为机械能进而发生可逆形变的高分子材料。最近几年,软驱动材料已经在许多高科技领域如软体机器人、传感器和体内手术设备等方面引起了极大的研究兴趣。但通常受限于组成材料自身的成分及其结构,这些驱动材料在驱动效率及速度、机械稳定性、响应灵敏度、形变可控性及复杂性等方面还存在严重不足,限制了软驱动材料的进一步应用。

  中国科学院宁波材料技术与工程研究所研究员陈涛带领的智能高分子材料团队前期研发了系列形状记忆型水凝胶软驱动材料,并取得了阶段性进展(Chem. Commun. 2014, 50,12277; Macromol. Rapid Commun. 2015, 36, 533; Polym. Chem. 2016, 7, 5343; Chem. Sci. 2016, 7, 6715; Chem. Commun. 2016, 52, 13292),但这些材料的驱动能力及响应灵敏度还仍显不足;基于该团队在碳基材料与高分子复合方面的研究基础(Chem. Commun., 2013, 49, 11167; Chem. Commun., 2014, 50, 7103; J. Mater. Chem. A, 2014, 2, 15268; ACS Appl. Mater. Interfaces, 2014, 6, 16204; J. Mater. Chem. A, 2015, 3, 4124; Adv. Funct. Mater., 2015, 25, 2428; J. Mater. Chem. A, 2016, 4, 10810; Chem. Mater., 2016, 28, 7125),该团队近期通过协同发挥聚多巴胺对水汽的敏感性与碳基材料如石墨烯等独特气体阻隔性,制备了基于刺激响应高分子与石墨烯的纳米复合智能软驱动材料。研究人员通过采用真空抽滤自组装的方法,将原位聚合制备得到的大尺寸还原氧化石墨烯/聚多巴胺(RGO-PDA)纳米复合薄片的分散液组装成宏观尺度的层状结构纳米复合薄膜(图1-A)。在水汽梯度的驱动下,该薄膜具有极高的响应灵敏度(图1-B)、快速运动能力(1000°/s)(图1-C)、强驱动力(可以承载自身42倍重量)(图1-D)以及连续自发运动(图1-E)等优良性能。这种材料突破了只有双层结构的材料才能进行驱动的限制,可以实现在外部刺激的过程中均一薄膜原位形成双层结构,进而进行驱动,这为制备新型快速、高灵敏驱动材料提供了一种新思路(Adv. Mater. Interfaces, 2016, 3, 1600169)。

  如果要实现软驱动材料的实际应用,迫切需要开发新的制备方法以获得各种复杂形变,特别是三维(3D)的复杂形变。近期,该团队研究人员采用紫外光原位还原法,将氧化石墨烯-聚(N-异丙基丙烯酰胺)(GO-PNIPAM)复合水凝胶的局部区域的氧化石墨烯还原,从而高度可控地获得了特定的各向异性结构。以其为模板,还可在水凝胶未还原区域引入其他刺激响应的第二网络,进一步实现了多重响应(热、光、离子强度和pH响应)的3D复杂形变(图2,Adv. Funct. Mater., 2016, DOI: 10.1002/adfm.201603448)。利用此方法,研究人员设计了一种具有复杂智能形变的仿生驱动器,可以在多重刺激响应下,准确抓取特定区域的目标物。这为智能软质驱动器件的设计和开发,特别是远程可控和多重响应的3D复杂驱动,提供了新思路。

  该研究工作得到了国家“青年千人计划”、中科院前沿科学与教育局“拔尖青年科学家”(QYZDB-SSW-SLH036)、国家自然科学基金(21304105,51573203)、浙江省杰出青年基金(LR14B040001)与浙江省石墨烯应用研究重点实验室等的资助。

图1 由石墨烯/聚多巴胺自组装成的纳米复合膜(A)驱动材料具备极高响应灵敏度(B)快速弯曲运动(C)大的驱动力(D)及湿度梯度连续驱动能力(E)等优良性能

图2 具备多重响应、复杂三维形变能力(A)及抓取能力(B)的智能软驱动材料

相关文章

科学家直接证实锯齿型石墨烯纳米带本征磁性

中国科学院上海微系统与信息技术研究所研究员王浩敏团队联合上海师范大学副教授王慧山,首次在实验中直接证实了锯齿型石墨烯纳米带(zGNRs)的本征磁性,加深了对石墨烯磁性性质的理解,也为开发基于石墨烯的自......

石墨烯量子点制备研究获进展

富勒烯(C60)因独特的光电、催化和润滑性能而备受关注。但是,C60在强相互作用的金属表面难以形成有序的聚合物结构。因此,如何捕捉到C60聚合过程中的关键中间体并实现可控转化是材料合成领域的挑战。近日......

石墨烯量子点制备研究获进展

富勒烯(C60)因独特的光电、催化和润滑性能而备受关注。但是,C60在强相互作用的金属表面难以形成有序的聚合物结构。因此,如何捕捉到C60聚合过程中的关键中间体并实现可控转化是材料合成领域的挑战。近日......

石墨烯合成迎新进展

近日,中国科学院兰州化学物理研究所的科研团队与瑞士巴塞尔大学、奥地利萨尔茨堡大学的学者携手,在富勒烯(C60)的研究上取得了重大进展,成功揭示了富勒烯如何转化为石墨烯(一种由单层碳原子组成的二维材料,......

学者开发出分离性能可切换的石墨烯智能分离膜

智能膜与主动分离技术是膜研究的新兴领域,能够在外界刺激下实现分离性能的可逆调控。近日,清华大学深圳国际研究生院副教授苏阳、山东理工大学副教授赵金平、大连理工大学副教授张宁等合作发现,将氧化石墨烯和石墨......

石墨烯中首次演示量子自旋霍尔效应

荷兰代尔夫特理工大学科学家首次在无需外部磁场的条件下,观测到石墨烯中的量子自旋流。这一突破性发现为自旋电子学的发展提供了关键支持,标志着向实现量子计算和先进存储设备迈出了重要一步。相关成果发表于最新一......

首个速度达拍赫兹光电晶体管问世

在一项具有开创性意义的国际合作研究中,美国亚利桑那大学研究团队展示了一种利用持续时间不到万亿分之一秒的超快光脉冲来操纵石墨烯中电子的方法。通过量子隧穿效应,他们记录到了电子几乎瞬间绕过物理屏障的现象,......

破解临床骨缺损修复难题中国团队历时15年研发材料获准上市

记者5月15日从中国科学院获悉,为破解临床骨缺损修复难题,中国科学院深圳先进技术研究院(深圳先进院)联合创新团队历经15年研发的“含镁可降解高分子骨修复材料”,近日已通过国家药品监督管理局创新医疗器械......

科研人员研发出高各向异性导热石墨烯复合材料实现光电热协同控冰

中国科学院合肥物质科学研究院固体物理研究所王振洋团队根据“3D打印结构设计-激光界面工程-跨尺度性能调控”设计思路,开发出具有高各向异性导热比、高光热/电热转换效率兼具良好疏水性和机械性能的石墨烯/聚......

石墨烯环境毒性机制研究获重要进展

广东省科学院生态环境与土壤研究所流域水环境整治绿色技术与装备团队联合美国麻省大学教授邢宝山团队在石墨烯环境毒性机制研究领域取得重要进展。他们首次揭示腐殖酸吸附对石墨烯增强芽孢杆菌毒性的分子机制。近日,......