发布时间:2024-11-05 16:48 原文链接: 影响衰老的因素到底是什么?

  人为什么会衰老,影响衰老的因素到底是什么?中国科学院动物研究所与其他单位的科研人员合作,首次构建了高精度的泛器官衰老空间导航图,发现组织结构失序和细胞身份丢失是多器官衰老的普遍特征,免疫球蛋白积累是衰老的一个关键驱动因素。相关研究成果4日在线发表于《细胞》杂志。

  衰老是人类慢性疾病的最大危险因素,细胞衰老是机体衰老及各种衰老相关疾病发生发展的重要诱因。长期以来,科学界都没有完全搞清楚调控衰老的具体分子机制。此次科研人员通过精细解析数百万空间位点,构建了小鼠9种组织器官的高精度衰老空间地图,揭示了超过70种细胞类型的分布特征。

  “我们利用新方法评估了衰老过程中组织器官结构混乱程度的变化,发现跨组织器官水平的空间结构失序和细胞身份丢失是系统衰老的共性特征。”论文第一作者、中国科学院动物研究所副研究员马帅说,比如,衰老导致脾脏白髓边缘区结构受损、淋巴细胞池萎缩和肝脏细胞分区紊乱等空间结构破坏,这些变异可能是器官功能衰退的重要诱因。

  同时,科研人员还构建了针对衰老空间位置的特异性敏感基因集,并识别出关键的衰老敏感位点。在免疫器官中,负责抗体合成的浆细胞及具有特定结构和功能的细胞,构成了衰老敏感位点微环境的主要成分,且这些细胞的免疫球蛋白相关基因表达水平随着与衰老敏感位点距离的临近而升高。研究显示,在人类和小鼠衰老过程中,免疫球蛋白(尤其是免疫球蛋白G即IgG)在多个组织器官中累积,表明免疫球蛋白水平上升可作为新的衰老生物标志物,并且IgG还可以直接诱导巨噬细胞衰老,说明免疫球蛋白是介导细胞衰老的关键驱动力。

  马帅表示,这项研究不仅绘制了哺乳动物多器官衰老的空间转录组地图,还精确定位了衰老敏感的核心区域及微环境特征,提出了免疫球蛋白相关衰老表型,为衰老科学研究和延缓衰老及防治相关疾病开辟了新路径。

相关文章

影响衰老的因素到底是什么?

人为什么会衰老,影响衰老的因素到底是什么?中国科学院动物研究所与其他单位的科研人员合作,首次构建了高精度的泛器官衰老空间导航图,发现组织结构失序和细胞身份丢失是多器官衰老的普遍特征,免疫球蛋白积累是衰......

影响衰老的因素到底是什么?

人为什么会衰老,影响衰老的因素到底是什么?中国科学院动物研究所与其他单位的科研人员合作,首次构建了高精度的泛器官衰老空间导航图,发现组织结构失序和细胞身份丢失是多器官衰老的普遍特征,免疫球蛋白积累是衰......

新研究分析肝脏损伤和修复过程中不同类型衰老细胞的特定作用

细胞衰老与人体的胚胎发育、损伤再生、癌症和衰老等生理病理过程紧密关联。不过,同样是“年迈”的细胞,却有好有坏,有些在体内作乱,有些则默默守护健康。但如何精准识别衰老细胞中的“好细胞”与“坏细胞”却是个......

我国科学家揭示过敏反应关键机制

记者24日获悉,西湖大学施一公团队和深圳医学科学院宿强团队合作揭示了过敏反应关键机制——IgE(免疫球蛋白E)介导的高亲和力受体激活的分子机制,为过敏反应研究领域带来重要进展。相关研究成果10月23日......

衰老研究“风华正茂”,健康老去愿景可期

我们为何会衰老?我们究竟有多老?如何健康地老去?这是近日召开的香山科学会议上,与会的基础研究科学家和临床医生讨论的议题。“上述问题分别对应着衰老机制、衰老度量和衰老干预三个方面的科学问题。”会议执行主......

研究揭示褪黑素对血管钙化及衰老的保护作用

血管钙化和衰老严重威胁人类生命健康,然而目前治疗手段有限。近日,国家代谢性疾病临床医学研究中心、中南大学湘雅二医院代谢内分泌科教授袁凌青科研团队,揭示了褪黑素诱导的内皮细胞中miR-302d-5p的成......

中科院刘光慧等人发现二甲双胍或可缓解衰老

中国科学院动物研究所刘光慧等研究人员合作发现,二甲双胍可减缓雄性猴子的衰老时钟。相关论文于2024年9月12日在线发表于国际学术期刊《细胞》。在一项为期40个月的严谨研究中,研究人员评估了二甲双胍对成......

爱刷手机的要小心了!研究表明常刷手机易加速衰老

在现如今这个时代,智能手机就像身体的一部分,像固定在手上的额外器官。许多人醒来第一件事是看手机,睡前最后一件事还是看手机,甚至是每5分钟看一次手机。有研究显示,18-30岁的人群中,近40%的人报告有......

常刷手机,加速衰老!同济大学最新研究,每多刷1小时,视网膜年龄衰老32天

上海市眼病防治中心/同济大学医学院上海市眼科医院的研究人员在GeroScience期刊上发表了一篇题为"Sleeponsettimeasamediatorintheassociationbe......

斯坦福最新研究:衰老真的是断崖式的这个年龄段是关键

衰老是一个复杂且多因素的生理变化过程,与心血管疾病(CVD)、糖尿病、神经退行性疾病和癌症等各种疾病密切相关。洞悉衰老在分子层面上的改变,对于理解衰老的潜在机制和发现与衰老相关疾病的潜在治疗靶点至关重......