原核生物通过一系列的防御系统来抵抗噬菌体等寄生生物的攻击。与真核生物的免疫系统类似,原核生物的防御系统也可以分为天然免疫系统和获得性免疫系统。天然免疫系统又包括限制性修饰(Restriction-Modification, R-M)系统、DNA干扰、毒素-抗毒素系统等,是非特异性的防御措施;而获得性免疫系统是高度特异性的防御手段,其典型代表为CRISPR-Cas系统。近年来,针对CRISPR-Cas系统的作用机制研究取得了一系列进展,这类系统的序列特异性核酸剪切活性能够对多种细胞和生物的基因组进行有效编辑,在基因工程和生物医学等多个领域显示出了巨大应用潜力。其中最受关注的是Cas9(type II)和Cas12a(type V)系统,二者都被设计和改造成高效精准的基因编辑工具,而Cas13a(type VI)系统也被开发成为高灵敏性的核酸检测系统。
为了逃逸宿主的CRISPR-Cas免疫作用,噬菌体也进化出了多种anti-CRISPR(Acr)蛋白来抑制宿主菌体内CRISPR-Cas系统的功能。目前为止,研究人员已发现了一系列针对type I和type II CRISPR-Cas系统的Acr蛋白,并且其中多个Acr蛋白的抑制机理已被阐明,具有非常明显的特异性和多样性。2018年,Jennifer A. Doudna和Joseph Bondy-Denomy两个课题组分别利用不同的方法发现了三个靶向type V效应蛋白Cas12a的Acr蛋白(AcrVA1、AcrVA4、AcrVA5)并在哺乳动物细胞内显示出有效抑制活性。随后,Dong等人发现AcrVA5通过对Cas12a进行乙酰化修饰来影响PAM基序的识别,从而抑制靶标双链DNA(dsDNA)的结合。同时,Knott等人报道AcrVA1能够剪切与Cas12a结合的CRISPR RNA (crRNA)的spacer序列,从而阻断DNA靶标链与crRNA互补配对;并且他们通过生化实验证明了AcrVA4能够影响靶标DNA的结合,但其具体作用机理仍不清楚。此外,在这三个Acr蛋白中,AcrVA4具有最高的抑制效率,并且能同时抑制莫拉氏菌(Moraxella bovoculi, MbCas12a)和毛螺菌编码的Cas12a(Lachnospiraceae bacterium, LbCas12a)蛋白活性,而LbCas12a已被广泛应用于多种细胞的基因编辑。因此,揭示AcrVA4抑制Cas12a活性的分子机制对于开发有效的基因编辑调节工具具有重要意义。
通过体外结合实验,中国科学院微生物研究所中科院院士高福与研究员施一团队发现AcrVA4能够与LbCas12a-crRNA二元复合物以及切割前后两种状态的LbCas12a-crRNA-dsDNA三元复合物结合,但是不能结合单纯的Cas12a蛋白,表明AcrVA4识别Cas12a的特定构象。随后,研究人员利用冷冻电镜单颗粒三维重构技术,解析了AcrVA4与LbCas12a-crRNA结合的原子分辨率的三维结构。结构显示AcrVA4以同源二聚体形式存在,并且与一个或两个LbCas12a-crRNA二元复合物进行结合。在两种形式的复合体中,AcrVA4通过类似的机制与Cas12a相互作用,表明两种结合模式具有相同的抑制作用(图1)。进一步结构分析表明,AcrVA4利用其C端结构域与LbCas12a的多个结构域发生相互作用并锁定其构象,从而阻止靶标DNA与crRNA的spacer序列进行互补配对,进而阻断DNA切割反应。有趣的是,当AcrVA4与切割前状态的LbCas12a-crRNA-dsDNA三元复合物(R-loop状态)相互作用时,能够将结合的dsDNA剥离下来,从而拯救被捕获的靶标DNA使其不被切割。此外,AcrVA4还能与切割后的LbCas12a-crRNA-dsDNA复合物结合并具有较高亲和力,这可能会干扰Cas12a被新的crRNA重置,阻断酶的循环利用过程(图2)。
该项工作系统地研究了AcrVA4抑制CRISPR-Cas12a系统的分子机制。与其他已知Acr蛋白的单一抑制机制不同,AcrVA4能够在反应过程中的多个步骤影响Cas12a发挥活性。这些发现拓展了人们对于Acr蛋白作用机制的了解,为设计可调控的基因编辑系统提供了重要理论基础。相关成果已在《美国国家科学院院刊》(PNAS)杂志在线发表,题为Structural insight into multistage inhibition of CRISPR-Cas12a by AcrVA4。微生物所助理研究员彭如超、中国科学院大学存济医学院博士生李志腾和中国科学技术大学博士生徐颖为论文共同第一作者;高福和施一为论文共同通讯作者。此外,南方科技大学冷冻电镜中心主任王培毅和微生物所研究员齐建勋等也提供了大力支持。该项目获得中科院重点战略性先导科技专项(B类)、国家科技重大专项、国家自然科学基金委优秀青年基金项目和青年科学基金项目、中国科学技术协会青年人才托举工程项目和中科院青年创新促进会等的经费支持。

图1 AcrVA4与LbCas12-crRNA结合的复合体三维结构

图2 AcrVA4抑制Cas12a活性的工作模型
CRISPR-Cas系统广泛存在于细菌和古细菌中,是原核生物的一种适应性免疫系统,用来抵御病毒、质粒等外源核酸的侵入。然而在2013年,有研究人员在ICP1噬菌体中发现了I-F型CRISPR-Cas系......
CRISPR-Cas系统广泛存在于细菌和古细菌中,是原核生物的一种适应性免疫系统,用来抵御病毒、质粒等外源核酸的侵入。然而在2013年,有研究人员在ICP1噬菌体中发现了I-F型CRISPR-Cas系......
4月26日,噬菌体资源库建设研讨会在京召开。会议由中国科学院微生物研究所主办,中国普通微生物菌种保藏管理中心和mLife期刊联合承办。会上,微生物所所长钱韦阐述了噬菌体库建设对应对耐药问题的重要性,希......
近日消息,瑞士和法国科学家携手,开发出一种芯片上的纳米“光镊”,能以最小光功率捕获、操纵和识别单个噬菌体,有望加速甚至改变基于噬菌体的疗法,治疗具有抗生素耐药性的细菌感染。相关研究论文发表于最新一期《......
噬菌体(Phage)和其他可移动遗传元件(MGE)对细菌施加了巨大的选择压力,作为回应,细菌也发展出了广泛的防御机制。其中最我们熟知的就是——CRISPR-Cas系统,这是一组在细菌中广泛存在的RNA......
噬菌体是地球上数量最庞大的生物群体,是原核生物的病毒,对维持地球生态系统的有序运行意义重大。在噬菌体和宿主漫长的竞赛中,为抵御噬菌体的入侵,原核生物进化出多种系统进行防御,如限制修饰系统、CRISPR......
噬菌体是地球上数量最庞大的生物群体,是原核生物的病毒,对维持地球生态系统的有序运行意义重大。在噬菌体和宿主漫长的竞赛中,为抵御噬菌体的入侵,原核生物进化出多种系统进行防御,如限制修饰系统、CRISPR......
瑞士一项新研究说,通过基因编辑技术等改造一类侵袭细菌的病毒——噬菌体,可以高效杀灭引发尿路感染的细菌,这比抗生素治疗更为精准,有助于避免细菌产生耐药性。每种噬菌体只侵袭特定的目标。瑞士苏黎世联邦理工学......
近日,中国科学院大连化学物理研究所生物技术研究部生物分离与界面分子机制研究组(1824组)卿光焱研究员团队开发了一种超精准内毒素分离材料。该团队通过“量体裁衣”的材料设计理念,提出了一种基于噬菌体展示......
一个开创性的植物病原体在线资源已经被开发出来,旨在帮助全世界的研究人员识别、检测和监测嗜酸菌的种类。这些病原体引起了各种植物疾病,从19世纪40年代灾难性的爱尔兰土豆饥荒到正在影响西海岸橡树的橡树猝死......