发布时间:2021-09-30 13:28 原文链接: 新发现:硝酸盐转运蛋白介导植物体内铁的再分配

  铁(Fe)是植物和其他生物体生长必需的元素,尽管土壤中含量丰富,大部分铁以不溶性还原型铁(Fe3+)的形式存在,难以被植物吸收。因此植物往往通过分泌H+或者小分子化合物的方式还原或者螯合铁,使之更容易被植物吸收利用。硝酸盐的吸收会造成土壤碱化从而影响Fe的吸收,导致植物出现缺铁性褪绿症状。因此研究氮与铁的营养关系对改善农业铁缺乏从而提高作物产量具有重要意义。

  2021年9月20日,中国科学院分子植物科学卓越创新中心龚继明研究组在Plant communication在线发表了题为Two NPF transporters mediate iron long-distance transport and homeostasis in Arabidopsis的研究论文,报道了硝酸根转运蛋白家族(NRT1/PTR Family)中NPF5.9和NPF5.8是参与植物缺铁应答及稳态和长途运输机制的重要基因。该研究在NPF家族中筛选到一个受缺铁强烈诱导的基因NPF5.9,主要在植物的维管组织高表达。有意思的是,该基因的定位并不是传统的细胞质膜,而是很可能位于胞内的反式高尔基体膜(TGN)。酵母突变体中异源表达NPF5.9表明其具有铁相关的转运活性,植物体内NPF5.9过表达促进了Fe往地上部库组织的运输,但是突变体则不表现任何症状。NPF5.9的同源基因NPF5.8具有相似的表达模式,且单突仍无明显表型。npf5.8 npf5.9双突变体则出现萌发率低、株型矮小、果荚发育异常等症状,花、莲座叶的Fe含量降低,浇灌铁能恢复部分表型,说明二者在铁稳态调控中功能冗余。进一步研究发现,这两个基因皆调控低亲和力的硝酸根转运,而且也显著影响到植物体内的硝酸根分配,但硝酸根和铁的积累之间互不影响,说明NPF5.9和NPF5.8可能通过氮素衍生物等间接方式调控铁的平衡,这在最近发表的同僚文章中得到证实(Chao et al., 2021, Science Advance),而且其在植物体内还通过硝酸根分配实现某种尚未阐明的生物学功能。

  中科院分子植物卓越中心龚继明研究员为通讯作者,博士生陈思颖为第一作者。该项工作得到中国科学院先导项目和国家重点研发计划的支持。

W020210926649540120696.jpg

相关文章

物理所等在二维铋中发现单质铁电态

铁电性是指在某些材料中表现出的一种自发电极化现象。这种极化可以通过施加外部电场进行翻转操作。由于铁电相可以受电场控制,在数据存储领域具有潜在的应用价值而备受关注。此外,铁电相的压电、热电和非线性光学特......

“钢铁侠”IMA维持植物铁稳态新机制

铁是植物生长发育的必要微量元素。植物细胞内,铁参与光合作用、呼吸作用及较多生理生化反应过程。缺铁影响植物的正常生长发育,严重时导致作物的产量下降和品质降低。尽管铁是植物所必需的元素,但过量的铁摄入会导......

分子植物中心在丛枝菌根共生“自我调节”研究中取得进展

近期,中国科学院分子植物科学卓越创新中心王二涛研究组揭示植物磷信号网络控制菌根共生的分子机制,相关成果以APhosphateStarvationResponse(PHR)-centerednetwor......

新发现:硝酸盐转运蛋白介导植物体内铁的再分配

铁(Fe)是植物和其他生物体生长必需的元素,尽管土壤中含量丰富,大部分铁以不溶性还原型铁(Fe3+)的形式存在,难以被植物吸收。因此植物往往通过分泌H+或者小分子化合物的方式还原或者螯合铁,使之更容易......

新发现:硝酸盐转运蛋白介导植物体内铁的再分配

铁(Fe)是植物和其他生物体生长必需的元素,尽管土壤中含量丰富,大部分铁以不溶性还原型铁(Fe3+)的形式存在,难以被植物吸收。因此植物往往通过分泌H+或者小分子化合物的方式还原或者螯合铁,使之更容易......

新发现:硝酸盐转运蛋白介导植物体内铁的再分配

铁(Fe)是植物和其他生物体生长必需的元素,尽管土壤中含量丰富,大部分铁以不溶性还原型铁(Fe3+)的形式存在,难以被植物吸收。因此植物往往通过分泌H+或者小分子化合物的方式还原或者螯合铁,使之更容易......

科学家揭示水稻根单细胞异质性和分化全景图

  中国科学院分子植物科学卓越创新中心王佳伟研究组系统揭示了水稻根单细胞异质性,描绘了水稻根表皮细胞和基本组织细胞的分化轨迹,明确了在根尖干细胞分化过程中基因表达与基因染色质可及性......

什么情况下体内的铁会升高Cell指出这种基因影响铁水平

铁是生命过程中必需的元素,它可以与血红蛋白结合运输氧气。因此,铁的水平下降会打破体内平衡,造成贫血。然而,超载的铁也会对器官造成损伤,可能导致关节炎、肝损伤和心力衰竭等不良后果。目前临床上对于铁超载的......

分子植物卓越中心等:害虫生防真菌林间应用的遗传特征

2月28日,ISMEJournal在线发表了中国科学院分子植物科学卓越创新中心王成树研究组牵头完成的题为Populationgenomicsandevolutionofafungalpathogena......

登革热将不再是难题清华大学程功团队给出破解手段

登革热是目前世界上传播流行最为广泛的病毒性传染病之一。登革病毒由蚊虫携带并且传播给人。目前,全世界范围内已有100多个国家及地区出现登革热的感染流行。据世界卫生组织(WHO)估计,全世界大约由25亿人......