新发现:硝酸盐转运蛋白介导植物体内铁的再分配

铁(Fe)是植物和其他生物体生长必需的元素,尽管土壤中含量丰富,大部分铁以不溶性还原型铁(Fe3+)的形式存在,难以被植物吸收。因此植物往往通过分泌H+或者小分子化合物的方式还原或者螯合铁,使之更容易被植物吸收利用。硝酸盐的吸收会造成土壤碱化从而影响Fe的吸收,导致植物出现缺铁性褪绿症状。因此研究氮与铁的营养关系对改善农业铁缺乏从而提高作物产量具有重要意义。 2021年9月20日,中国科学院分子植物科学卓越创新中心龚继明研究组在Plant communication在线发表了题为Two NPF transporters mediate iron long-distance transport and homeostasis in Arabidopsis的研究论文,报道了硝酸根转运蛋白家族(NRT1/PTR Family)中NPF5.9和NPF5.8是参与植物缺铁应答及稳态和长途运输机制的重要基因。该研究在NPF家族中筛选到......阅读全文

新发现:硝酸盐转运蛋白介导植物体内铁的再分配

  铁(Fe)是植物和其他生物体生长必需的元素,尽管土壤中含量丰富,大部分铁以不溶性还原型铁(Fe3+)的形式存在,难以被植物吸收。因此植物往往通过分泌H+或者小分子化合物的方式还原或者螯合铁,使之更容易被植物吸收利用。硝酸盐的吸收会造成土壤碱化从而影响Fe的吸收,导致植物出现缺铁性褪绿症状。因此研

植物根系应答土壤铁毒逆境的分子生理机制

  铁毒是热带和淹水土壤常见的障碍因子。植物发生铁毒害时,根系生长受阻,严重时根系腐坏死亡(Becker and Asch, 2005, Journal of Plant Nutrition and Soil Science 168: 558-573)。然而,人们对铁毒抑制植物根系发育的生物学机制的

我国学者破解植物根系应答土壤铁毒逆境的分子生理机制

  铁毒是热带和淹水土壤常见的障碍因子。植物发生铁毒害时,根系生长受阻,严重时根系腐坏死亡(Becker and Asch, 2005, Journal of Plant Nutrition and Soil Science 168: 558-573)。然而,人们对铁毒抑制植物根系发育的生物学机制的

Science:新颗粒形成NPF可以在严重污染的空气中发生

  在一项新的研究中,一个国际研究团队发现即便在污染严重的空气中,新颗粒形成(new particle formation, NPF)也能够在大气中发生。在他们发表在2018年7月20日的Science期刊上的标题为“Atmospheric new particle formation from s

激素转运蛋白的研究进展的全面总结

  2021年6月5日,以色列特拉维夫大学的科研人员在Current Opinion in Plant Biology 发表了题为“Transport mechanisms of plant hormones”的综述文章,该综述总结了当前关于激素转运蛋白的研究进展(图1),并讨论了植物中常见和独特的

《分子植物》跨入植物科学顶级期刊之列

  近日,美国汤姆森路透—科学信息研究所公布了2011年度《期刊引用报告》。中国学术期刊《分子植物》(Molecular Plant)的影响因子上升为5.546,位居国际植物科学领域研究类期刊第5名,跨入该领域190种核心期刊前5%(排名第9),并连续两年在亚洲同领域期刊中排名第一,已进入该

活体生理检测仪NMT验证NRT1.5的钾转运功能

2017年,中国农业大学的王毅教授课题组在植物科学领域的顶级期刊Plant Cell上发表了题为NRT1.5/NPF7.3 Functions as a Proton-Coupled H+/K+ Antiporter for K+ Loading into the Xylem in Arabidop

一氧化氮响应环境变化诱导运动可塑性的精确机制

  一氧化氮(NO)是一种气体信使分子,已被揭示在心脑血管调节、神经、免疫调节、运动能力等方面发挥重要作用。一氧化氮合成酶(NOS)是NO合成过程的关键限速酶,直接调控细胞中的NO含量。目前,在脊椎动物中已经发现三种NOS 编码基因(neural NOS, inducible NOS, epithe

一氧化氮响应环境变化诱导运动可塑性的精确机制

  一氧化氮(NO)是一种气体信使分子,已被揭示在心脑血管调节、神经、免疫调节、运动能力等方面发挥重要作用。一氧化氮合成酶(NOS)是NO合成过程的关键限速酶,直接调控细胞中的NO含量。目前,在脊椎动物中已经发现三种NOS 编码基因(neural NOS, inducible NOS, epithe

植物调控早期种子铁装载的机制分析

  2021年6月8日Molecular Plant在线发表了浙江大学郑绍建团队题为Restriction of Iron Loading into Developing Seeds by A YABBY Transcription Factor Safeguards Successful Repr

用植物分子铺就绿色道路

   按照Ted Sleghek的说法,一种从植物和树木中提取的分子可以让道路和自行车道建设成本更低、更环保,他是一名荷兰应用科学研究院(TNO)的资深科学家。  Sleghek说从植物中提取的木质素是一种可再生能源,它是造纸工艺过程的废料,可以用于替代沥青,后者是目前柏油路和屋顶密封剂的主要黏合材

版纳植物园蕨类植物倒挂铁角蕨研究获进展

  蕨类植物倒挂铁角蕨Asplenium normale D. Don并非一个单型种,而是一个复杂的复合体类群(Asplenium normale complex),其具有广泛的分布范围,关于该复合体内包含的类群和范围以及类群间的系统演化关系,目前还存在有较大的争议。而且,倒挂铁角蕨存在二倍体和

eLife :发现调控飞蝗聚群过程的“双刹车”神经分子机制

  群聚现象广泛地存在于动物中。群聚的个体与独居的个体相比较通常表现出显着的个体间协助和行为可塑性以适应多变的生存环境。飞蝗是世界性的重大农业害虫,具有典型的聚群现象。其多种行为特征,如嗅觉行为及运动活性,可在群居型及散居型间相互转变,是研究聚群行为可塑性的理想模型。我国的科学家曾发现嗅觉、多巴胺

研究揭示植物病原细菌抑制植物免疫的分子机制

近日,《新植物学家》(New Phytologist)发表了中国农业科学院植物保护研究所植物病害生物防治研究创新团队最新研究成果。该成果揭示了植物病原细菌丁香假单胞菌(Pst DC3000)通过激活植物茉莉酸信号来抑制水杨酸信号,从而抵御植物免疫、促进病原菌侵染的分子机制,这为进一步理解植物与病原菌

研究揭示植物病原细菌抑制植物免疫的分子机制

  近日,《新植物学家》(New Phytologist)发表了中国农业科学院植物保护研究所植物病害生物防治研究创新团队最新研究成果。该成果揭示了植物病原细菌丁香假单胞菌(Pst DC3000)通过激活植物茉莉酸信号来抑制水杨酸信号,从而抵御植物免疫、促进病原菌侵染的分子机制,这为进一步理解植物与病

昆明植物所揭示植物春化现象的分子调控机制

  春化(vernalization)是指一、二年生种子作物在苗期需要经受一段低温处理,才能开花结实的现象。冬性草本植物(如冬小麦)一般于秋季萌发,经过一段营养生长后度过寒冬,于第二年夏初开花结实,这是因为冬性植物需要经历一定时间的低温才能形成花芽。春化也是植物适应性进化的结果。生长在低纬度地区的拟

“钢铁侠”IMA维持植物铁稳态新机制

  铁是植物生长发育的必要微量元素。植物细胞内,铁参与光合作用、呼吸作用及较多生理生化反应过程。缺铁影响植物的正常生长发育,严重时导致作物的产量下降和品质降低。尽管铁是植物所必需的元素,但过量的铁摄入会导致活性氧迸发引起细胞毒害。因此,植物需要维持细胞内的铁稳态。  植物能感知体内铁浓度的变化并通过

Science:解析植物缺水的分子机制

  生物通报道:我们都知道,当植物缺水时,它们的叶子会枯萎,它们开始看起来干干的。但是在分子水平上发生了什么呢?  最近,美国索尔克研究所的科学家们,在这个问题的答案上实现了重大飞跃,这对于帮助农作物适应干旱及其他气候相关压力源,是至关重要的。  最新的研究表明,在面对环境困境时,植物会使用一小组蛋

植物分子育种主要包括哪些内容

名词概述分子育种,就是将基因工程应用于育种工作中,通过基因导入,从而培育出一定要求的新品种的育种方法。动物分子育种方法主要是以分子标记为基础进行标记辅助选择,然后以转基因技术为基础进行转基因育种。是按照人们的愿望,进行严密的设计,通过体外 DNA重组技术 和 DNA转移技术,有目的地改造生物种性,使

研究揭示茉莉酸抑制铁吸收的分子机制

  铁是生物体必不可少的一种微量元素,它作为多种酶的辅基在DNA的合成、光合作用、呼吸代谢和激素合成等生命活动中发挥重要作用。尽管土壤中含有丰富的铁,但受土壤理化特性的影响,在大多数土壤中铁主要以难溶性的三价化合物形式存在,很难被植物吸收利用。缺铁会导致植物叶绿素合成减少,光合速率降低,植物生长受阻

研究揭示茉莉酸抑制铁吸收的分子机制

铁是生物体必不可少的一种微量元素,它作为多种酶的辅基在DNA的合成、光合作用、呼吸代谢和激素合成等生命活动中发挥重要作用。尽管土壤中含有丰富的铁,但受土壤理化特性的影响,在大多数土壤中铁主要以难溶性的三价化合物形式存在,很难被植物吸收利用。缺铁会导致植物叶绿素合成减少,光合速率降低,植物生长受阻甚至

版纳植物园揭示“钢铁侠”IMA维持植物铁稳态的新机制

  铁是植物生长发育的必要微量元素。植物细胞内,铁参与光合作用、呼吸作用及较多生理生化反应过程。缺铁影响植物的正常生长发育,严重时导致作物的产量下降和品质降低。尽管铁是植物所必需的元素,但过量的铁摄入会导致活性氧迸发引起细胞毒害。因此,植物需要维持细胞内的铁稳态。  植物能感知体内铁浓度的变化并通过

分子植物卓越中心揭示新的RdDM通路的分子机制

  DNA甲基化是一种保守的表观遗传修饰,对基因表达和基因组稳定性具有重要意义。RNA介导的DNA甲基化(植物RdDM途径)是植物小RNA参与表观调控的重要方式,其需要两个植物特有的RNA聚合酶——Pol IV(大亚基NRPD1为催化核心)和Pol V(大亚基NRPE1为催化核心)以及大量的辅助蛋白

3月16日《科学》杂志精选

 剥夺交配,果蝇求助酒精  因为交配企图的挫败,雄性果蝇会求助于加了酒精的食物作为一种慰藉。Galit Shohat-Ophir及其同事的这一发现是揭开一种脑内与成瘾有关的有趣“奖励”通路的关键。那些被允许交配的果蝇会摄取较少的酒精并有着较高水平的一种叫做NPF的神经递质。然而,被剥

Nature发文:绘制植物科学的分子图

  任何生物体的每个细胞都包含完整的遗传信息,或者说是一个生物的“蓝图”,编码所谓的DNA核苷酸构建块序列。但是植物是如何创造出各种各样的组织的呢?比如将光能转化成化学能并产生氧气的叶子,或者从土壤中吸收养分的根?答案就在各自组织细胞的蛋白质模式。  蛋白质是每个细胞的主要分子。它们是生物催化剂,在

分子生态学词汇自播植物

中文名称:自播植物英文名称:volunteer plant定  义:作物种子无意散落后在田间自然繁殖的植株。应用学科:生态学(一级学科),分子生态学(二级学科)

激素调控植物干细胞分子机理揭示

  山东农业大学张宪省教授带领的研究团队在植物干细胞领域研究取得了重大突破,揭示了激素调控植物干细胞活动的分子机理。6月2日,国际植物学领域顶级学术期刊《植物细胞》发表了这项研究成果。该成果为推动更大范围植物离体快繁、生物育种和基因工程奠定了重要的理论基础。  植物干细胞主要存在于茎端、根端和形成层

分子生态学词汇逸生植物

中文名称:逸生植物英文名称:feral plant定  义:从栽培转变为野生状态的植物。应用学科:生态学(一级学科),分子生态学(二级学科)

植物CPP基因家族的分子进化研究

实验概要类CPP基因家族(CPP-like gene family)属于一类成员数目较少的基因家族,该基因家族成员编码的蛋白质序列含有一到两个富含半耽氨酸的结构域,即CXC结构域。该基因家族在植物和动物中广泛存在,但是没有在酵母中发现。为了解CPP-like基因家族在植物中的进化规律,本研究

分子植物卓越中心研究团队揭示抑制植物免疫新机制

  9月26日,中国科学院分子植物科学卓越创新中心上海植物逆境生物学研究中心Alberto Macho研究组在PLoS Pathogens上,发表了题为A bacterial effector protein prevents MAPK-mediated phosphorylation of SGT