发布时间:2017-02-09 15:37 原文链接: 新材料比三维石墨烯的导电率还大两个数量级

  研究者发现金属钠可以显著地提高碳电极的性能。

  在能源技术领域中,小小的金属钠起到了可思议的作用。尤其是当碳中包埋了金属钠后,就可以显著地提高电极的性能。

  密西根理工大学(Michigan Tech)材料科学和工程系Charles和Carroll McArthur教授Yun Hang Hu领导的研究团队,找到了一种全新的方法来合成碳纳米片,这种碳纳米片就包埋了金属钠,而之前,这种材料仅仅停留在理论上。最近业内一家倍受关注的刊物《纳米快报》(Nano Letters )报道了这项研究成果。

  高导电性和大接触表面积,是理想电极材料的必要条件,但是这两种性质在现有材料中不兼容。无定形碳表面积虽然大,但导电率却很低。石墨正好与之相反,导电性较高,但是表面积不大。相比之下,石墨烯同时具备这两种性质,密西根理工大学Yun Hang Hu合成的包埋有金属钠的碳电极性能就非常好。

  Hu介绍说,“与三维石墨烯相比,包埋有金属钠的碳不仅电导率比它大两个数量级,而且隧道和孔状结构还使它具备更大的接触面积。”

  这种材料与简单参杂金属的碳不同,以往的金属只是简单的粘附在碳表面,很容易被氧化。不过,如果能够把金属埋入碳中,外部的碳骨架便会起到保护作用。为了合成这种梦寐以求的金属,Hu和他的团队不得不寻找新的工艺流程。他们让金属钠与一氧化碳反应,这种反应需要控制温度,从而生成黑色的碳粉捕获钠原子。

  此外,密西根理工大学和得克萨斯大学奥斯汀分校(University of Texasat Austin)合作的研究结果证明,金属钠确实已被埋入碳中而不是简单的吸附在碳表面。接下来,研究团队在几种能源器件中测试了材料的性能。

  在染料敏化太阳能电池领域,转换效率每提升0.1%,就意味着向商业化迈进一步。研究结果表明,基于铂的太阳能电池转换效率为7.89%,而这已经达到行业标准。相比之下,以包埋有金属钠的碳为材料的太阳能电池,转换效率可达11.03%。

  比起可充电电池,超级电容器可以更快地接受和释放电荷,这又使它成为汽车,火车,电梯和其他重型机械设备的理想电源。材料储存电荷的能力,即容量,用法拉(farads,F)表示,材料的质量也很重要,用克(grams,g)表示。

  在超级电容器中,活性炭是一种常见材料,它的比电容为71F/g。三维石墨烯的比电容稍大,为112F/g。相比之下,包埋有金属钠的碳纳米片的比电容高达145 F/g,远大于前两者。此外,经过5000次充/放电循环,这种新材料的性能还保持在96.4%,这表明电极具有很高的稳定性。

  Hu还说,“能源器件领域急需创新。”同时,他认为包埋有金属钠的碳纳米片的应用前景很光明,这种材料促进了太阳能技术,电池,燃料电池和超级电容器等领域的发展。

相关文章

科学家直接证实锯齿型石墨烯纳米带本征磁性

中国科学院上海微系统与信息技术研究所研究员王浩敏团队联合上海师范大学副教授王慧山,首次在实验中直接证实了锯齿型石墨烯纳米带(zGNRs)的本征磁性,加深了对石墨烯磁性性质的理解,也为开发基于石墨烯的自......

石墨烯量子点制备研究获进展

富勒烯(C60)因独特的光电、催化和润滑性能而备受关注。但是,C60在强相互作用的金属表面难以形成有序的聚合物结构。因此,如何捕捉到C60聚合过程中的关键中间体并实现可控转化是材料合成领域的挑战。近日......

石墨烯量子点制备研究获进展

富勒烯(C60)因独特的光电、催化和润滑性能而备受关注。但是,C60在强相互作用的金属表面难以形成有序的聚合物结构。因此,如何捕捉到C60聚合过程中的关键中间体并实现可控转化是材料合成领域的挑战。近日......

石墨烯合成迎新进展

近日,中国科学院兰州化学物理研究所的科研团队与瑞士巴塞尔大学、奥地利萨尔茨堡大学的学者携手,在富勒烯(C60)的研究上取得了重大进展,成功揭示了富勒烯如何转化为石墨烯(一种由单层碳原子组成的二维材料,......

学者开发出分离性能可切换的石墨烯智能分离膜

智能膜与主动分离技术是膜研究的新兴领域,能够在外界刺激下实现分离性能的可逆调控。近日,清华大学深圳国际研究生院副教授苏阳、山东理工大学副教授赵金平、大连理工大学副教授张宁等合作发现,将氧化石墨烯和石墨......

石墨烯中首次演示量子自旋霍尔效应

荷兰代尔夫特理工大学科学家首次在无需外部磁场的条件下,观测到石墨烯中的量子自旋流。这一突破性发现为自旋电子学的发展提供了关键支持,标志着向实现量子计算和先进存储设备迈出了重要一步。相关成果发表于最新一......

首个速度达拍赫兹光电晶体管问世

在一项具有开创性意义的国际合作研究中,美国亚利桑那大学研究团队展示了一种利用持续时间不到万亿分之一秒的超快光脉冲来操纵石墨烯中电子的方法。通过量子隧穿效应,他们记录到了电子几乎瞬间绕过物理屏障的现象,......

科研人员研发出高各向异性导热石墨烯复合材料实现光电热协同控冰

中国科学院合肥物质科学研究院固体物理研究所王振洋团队根据“3D打印结构设计-激光界面工程-跨尺度性能调控”设计思路,开发出具有高各向异性导热比、高光热/电热转换效率兼具良好疏水性和机械性能的石墨烯/聚......

石墨烯环境毒性机制研究获重要进展

广东省科学院生态环境与土壤研究所流域水环境整治绿色技术与装备团队联合美国麻省大学教授邢宝山团队在石墨烯环境毒性机制研究领域取得重要进展。他们首次揭示腐殖酸吸附对石墨烯增强芽孢杆菌毒性的分子机制。近日,......

我国学者在石墨烯人造原子中实现轨道杂化

图1上半部分:真实原子中的(a)未杂化的轨道和(b)sp2轨道杂化示意图;下半部分:人造原子中的(c)圆形势场和(d)椭圆形势场示意图图2(a,b)数值计算的杂化态(θ形和倒θ形);(c,d)实验观测......